My tips, strategies and hacks as a PhD student

Email: m.prosser@pgr.reading.ac.uk

Having been a PhD student for a little over 3 months I am perhaps ill-qualified to write such a ‘PhD tips’ type of blog post, but write one I appear to be doing! It’s probably actually more accurately titled ‘study tips in general but ones which are highly relevant to science PhDs.’

The following are just my tips on what have helped me over the course of my studies and may be obvious or not suitable for others, but I write them on the off-chance that something here is useful to someone out there. No doubt I will have many more such strategies by the end of my time here in Reading!

Papers and articles
As a science student you may have encountered these from time to time. The better ones are clearly written and succinct, the worse ones are verbose and obscurantist. If you’re not the quickest reader in the world, getting through papers can end up consuming a great deal of your time.

I’m going to advocate speed reading in a bit but when you start learning speed reading, one of the things they ask you to think about first is “Do I really need to read this?”. If the answer is yes, then the next question is “Do I really need to read all of it?”. Perhaps you only need to glance at just the abstract, figures and conclusion? After all, time spent reading this is time not spent doing something else, something more profitable perhaps, so do check that it really is worth your time before diving in.

So once I’ve ascertained that the article is indeed worth my time, I sit down with a pencil (or the equivalent for a PDF) and read through the sections I’ve decided on. Anything that makes my neurons spike (“oh that’s interesting….”), I underline or highlight. Any thoughts or questions that occur to me, I write in the margin. If I feel the need to criticise the paper for being insufficiently clear then I write down these remarks, too.

Once I get to the end, I put the article away out of sight and sit down with a blank piece of paper (or on a computer) and try and write something very informally about what I’ve just read. Quite often my mind will go helpfully blank at this point, so I try and finish the following sentence: “The biggest thing (if anything) I learned from this article was….”. Completing this one sentence then tends to lead to other stuff tumbling out and in no particular order I jot these all down. Only once the majority of it is down on paper do I take a peek at the annotated piece to see what I missed (For heaven’s sake avoid painting the article yellow with a highlighter!)

Please, please, please, don’t.

This personal blurb that you have produced is then a good way to quickly remind yourself of the contents of that article in the future without having to reread it from scratch. This post-reading exercise need not take more than 15 minutes but if you’re worried about spending this extra time, don’t be. You’ll save yourself a heap of time in future by not having to reread the damn thing.

Random piece of advice – if you are unaware of the Encyclopedia of Atmospheric Sciences, then check it out. Whatever your PhD topic I guarantee there’ll be 10 or so shortish entries which are all highly relevant to your particular PhD topic and consequently worth knowing about!

Speed reading
Really still on the previous paragraph but as is often the way, between the valuable articles that you really should be reading and the stuff for which life’s really too short there’s a grey area.
For such grey areas I am an advocate of speed reading.
For any electronic texts check out this free website:

Just copy, paste and go! https://accelareader.com/

The pace the words flash up doesn’t have to be particularly fast (I suggest trying 300 wpm to start with) but the golden rule is to never press pause once you’ve started. No going back to read stuff you’ve missed (well not until you’ve reached the end first at least!). This method of reading is especially useful for any articles that feel like quagmires into which you are slowly drowning. Paradoxically reading faster in such instances often increases one’s comprehension.

A good way to develop the skill of speed reading is to start on articles you see posted on social media, articles that you are not too fussed about getting every single detail. Just let it wash over you!

Talks and lectures
I have found it useful to make audio recordings of these. I don’t usually tend to listen back, but if there is something that was particularly interesting or dense that might be worth revisiting then it can be very worthwhile. I make a note of the time this something was said at the time it was said and can thus track it down in the recording fairly painlessly afterwards.

One tip about note taking that has stayed with me since I first heard it several years back was the following: after writing down the title, only make notes on what is surprising or interesting to you, just that! This may result in many lines of notes or no lines at all, but whatever you do, don’t just make notes of everything that was said. This advice has been very useful for me.

Organising
Ask me in person if you would like to know my thoughts on this.

Programming to help physical intuition.
This is probably more relevant to students like me who didn’t come from a maths or physics undergrad and consequently aren’t quite as fluent in the old maths….or perhaps undergrads for that matter…
….but in my undergrad (environmental science) I spent quite a lot of the time spent studying maths (and to a lesser extent) physics involved memorising complicated procedures. The best example of this was a lecture on Fourier Series where the professor took the whole hour to work through the process of getting from an input (x^2) to the output (first n terms of the Fourier series). Because it took so much space/effort for me to remember this lengthy process, it ended up crowding out the arguably more important conceptual stuff, such as what a Fourier series actually does and why it is it so useful. When all is said and done and the final exam is handed in, these concepts are what should (ideally) stick with you even if the details of how, don’t.
So here’s where I think programming can come in. Firstly, there’s nothing like coding up some process to check whether you understand the nuts and bolts of it, but more importantly once it has been coded up properly you can then play about with the inputs to see how these affect the graphed outputs. Being able to ‘play’ about like this gives you a more intuitive feel for the model/process that wouldn’t be possible if you had to manually redo the laborious calculations each time you wanted to change the input parameters. 3 examples of where I have done this myself are the following:
1. Getting my head around the thermal inertia of the oceans by varying the depth of the surface and deep layer of the ocean in a simple model.
2. Playing around graphically with dispersion.
3. Convincing myself that it really is true that in the middle of the Northern Hemisphere summer the north pole receives more energy per day than the equator.

And you?
So do you have any hard won study/research tips? If so do email me as I would be interested in hearing about them!
Which study hack do you think I (or others) are most lacking?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s