Weather Variability and its Energy Impacts

James Fallon & Brian Lo –  j.fallon@pgr.reading.ac.ukbrian.lo@pgr.reading.ac.uk 

One in five people still do not have access to modern electricity supplies, and almost half the global population rely on burning wood, charcoal or animal waste for cooking and eating (Energy Progress Report). Having a reliable and affordable source of energy is crucial to human wellbeing: including healthcare, education, cooking, transport and heating. 

Our worldwide transition to renewable energy faces the combined challenge of connecting neglected regions and vulnerable communities to reliable power supplies, and also decarbonising all energy. An assessment on supporting the world’s 7 billion humans to live a high quality of life within planetary boundaries calculated that resource provisioning across sectors including energy must be restructured to enable basic needs to be met at a much lower level of resource use [O’Neill et al. 2018]. 

Adriaan Hilbers recently wrote for the Social Metwork about the renewable energy transition (Why renewables are difficult), and challenges and solutions for modern electricity grids under increased weather exposure. (Make sure to read that first, as it provides an important background for problems associate with meso to synoptic scale variability that we won’t cover here!)  

In this blog post, we highlight the role of climate and weather variability in understanding the risks future electricity networks face. 

Climate & weather variability 

Figure 1 – Stommel diagram of the Earth’s atmosphere 

A Stommel diagram [Stommel, 1963] is used to categorise climate and weather events of different temporal and spatial scales. Logarithmic axes describe time period and size; contours (coloured areas) depict the spectral intensity of variation in sea level. It allows us to identify a variety of dynamical features in the oceans that traverse magnitudes of spatial and temporal scales. Figure 1 is a Stommel diagram adapted to describe the variability of our atmosphere.  

Microscale Smallest scales to describe features generally of the order 2 km or smaller 
Mesoscale Scale for describing atmospheric phenomena having horizontal scales ranging from a few to several hundred kilometres 
Synoptic Largest scale used to describe meteorological phenomena, typically high hundreds or 1000 km or more 

Micro Impacts on Energy 

Microscale weather processes include more predictable phenomena such as heat and moisture flux events, and unpredictable turbulence events. These generally occur at scales much smaller than the grid scale represented in numerical weather prediction models, and instead are represented through parametrisation. The most important microscale weather impacts are for isolated power grids (for example a community reliant on solar power and batteries, off-grid). Microscale weather events can also make reliable supply difficult for grids reliant on a few geographically concentrated renewable energy supplies. 

Extended Range Weather Impacts on Energy 

Across the Stommel diagram, above the synoptic scale are seasonal and intraseasonal cycles, decadal and climate variations. 

Subseasonal-to-Seasonal (S2S) forecasts are an exciting development for decision-makers across a diverse range of sectors – including agriculture, hydrology, the humanitarian sector [White et al. 2017]. In the energy sector, skilful subseasonal energy forecasts are now production ready (S2S4E DST).  Using S2S forecasts can help energy users anticipate electricity demand peaks and troughs, levels of renewable production, and their combined impacts several weeks in advance. Such forecasts will have an increasingly important role as more countries have higher renewable energy penetration (increasing their electricity grid’s weather exposure). 

Decadal Weather Cycle and Climate Impacts on Energy 

Energy system planners and operators are increasingly trying to address risks posed by climate variability, climate change, and climate uncertainty.  

Figure 2 was constructed from the record of Central England temperatures spanning the years of 1659 to 1995 and highlights the modes of variability in our atmosphere on the order of 5 to 50 years. Even without the role of climate change, constraining the boundary conditions of our weather and climate is no small task. The presence of meteorologically impactful climate variability at many different frequencies increases the workload for energy modellers, requiring many decades of climate data in order to understand the true system boundaries. 

Figure 2  – Power spectra of central England from mid 17th century, explaining variability with physical phenomena [Ghil and Lucarini 2020]

When making models of regional, national or continental energy networks, it is now increasingly common for energy modellers to consider several decades of climate data, instead of sampling a small selection of years. Figure 2 shows the different frequencies of climate variability – relying on only a limited few years of data cannot explore the extent of this variability. However significant challenges remain in sampling long-term variability and change in models [Hilbers et al. 2019], and it is the role of weather and climate scientists to communicate the importance of addressing this. 

Important contributions to uncertainty in energy system planning don’t just come from weather and climate. Variability in future energy systems will depend on technological, socioeconomic and political outcomes. Predictions of which future technologies and approaches will be most sustainable and economical are not always clear cut and easy to anticipate. A virtual workshop hosted by Reading’s energy-met group last summer [Bloomfield et al. 2020] facilitated discussions between energy and climate researchers. The workshop identified the need to better understand how contributions of all these different uncertainties propagate through complex modelling chains. 

An Energy-Meteorologist’s Journey through Time and Space 

Research is underway into tackling the uncertainties and understanding of energy risks and impacts across the spectra of spatial and temporal scales. But understanding of energy systems, and successful future planning requires decision-making involving a broad (and perhaps not fully identified) group of important technological and other factors, as well as the weather and climate impacts. It is not enough to consider any one of these alone! It is vital experts across different fields collaborate on working towards what will be best for our future energy grids. 

Tracking SDG7 – The Energy Progress Report https://trackingsdg7.esmap.org 

Why renewables are difficult – Adriaan Hilbers Social Metwork 2021 https://socialmetwork.blog/2021/01/15/why-renewables-are-difficult

O’Neill, D.W., Fanning, A.L., Lamb, W.F. et al. A good life for all within planetary boundaries https://doi.org/10.1038/s41893-018-0021-4 

Stommel, H., 1963. Varieties of oceanographic experience. Science, 139(3555), pp.572-576. https://www.jstor.org/stable/1709894

White et al (2017) Potential applications of subseasonal‐to‐seasonal (S2S) predictions https://doi.org/10.1002/met.1654 

M Ghil, V Lucarini (2020) The physics of climate variability and climate change https://doi.org/10.1103/RevModPhys.92.035002

AP Hilbers, DJ Brayshaw, A Gandy (2019) Importance subsampling: improving power system planning under climate-based uncertainty https://doi.org/10.1016/j.apenergy.2019.04.110 

Bloomfield, H. et al. (2020) The importance of weather and climate to energy systems: a workshop on next generation challenges in energy-climate modelling https://doi.org/10.1175/BAMS-D-20-0256.1 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s