The impact of atmospheric model resolution on the Arctic

Email: sally.woodhouse@pgr.reading.ac.uk

The Arctic region is rapidly changing, with surface temperatures warming at around twice the global average and sea ice extent is rapidly declining, particularly in the summer. These changes affect the local ecosystems and people as well as the rest of the global climate. The decline in sea ice has corresponded with cold winters over the Northern Hemisphere mid-latitudes and an increase in other extreme weather events (Cohen et al., 2014). There are many suggested mechanisms linking changes in the sea ice to changes in the stratospheric jet, midlatitude jet and storm tracks; however this is an area of active research, with much ongoing debate.

Stroeve_et_al-2012-fig2a
Figure 1. Time-series of September sea ice extent from 20 CMIP5 models (colored lines), individual ensemble members are dotted lines and the individual model mean is solid. Multi-model ensemble mean from a subset of the models is shown in solid black with +/- 1 standard deviation in dotted black. The red line shows observations. From Stroeve et al. (2012)

It is therefore important that we are able to understand and predict the changes in the Arctic, however there is still a lot of uncertainty. Stroeve et al. (2012) calculated time series of September sea ice extent for different CMIP5 models, shown in Figure 1. In general the models do a reasonable job of reproducing the recent trends in sea ice decline, although there is a large inter-model spread and and even larger spread in future projections. One area of model development is increasing the horizontal resolution – where the size of the grid cells used to calculate the model equations is reduced.

The aim of my PhD is to investigate the impact that climate model resolution has on the representation of the Arctic climate. This will help us understand the benefits that we can get from increasing model resolution. The first part of the project was investigating the impact of atmospheric resolution. We looked at three experiments (using HadGEM3-GC2), each at a different atmospheric resolutions: 135km (N512), 60km (N216) and 25km (N96).

sea_ice_concentration_obs_GC2
Figure 2. Annual mean sea ice concentration for observations (HadISST) and the bias of each different experiment from the observations N96: low resolution, N216: medium resolution, N512: high resolution.

The annual mean sea ice concentration for observations and the biases of the 3 experiments are shown in Figure 2. The low resolution experiment does a good job of producing the sea extent seen in observations with only small biases in the marginal sea ice regions. However, in the higher resolution experiments we find that the sea ice concentration is much lower than the observations, particularly in the Barents Sea (north of Norway). These changes in sea ice are consistent with warmer temperatures in the high resolution experiments compared to the low resolution.

To understand where these changes have come from we looked at the energy transported into the ocean by the atmosphere and the ocean. We found that there is an increase in the total energy being transported into the Arctic which is consistent with the reduced sea ice and warmer temperatures. Interestingly, the increase in energy is being transported into the Arctic by the ocean (Figure 3), even though it is the atmospheric resolution that is changing between the experiments. In the high resolution experiments the ocean energy transport into the Arctic, 0.15 petawatts (PW), is in better agreement with observational estimates, 0.154 PW, from Tsubouchi et al. (2018). Interestingly, this is in contrast to the worse representation of sea ice concentration in the high resolution experiments. (It is important to note that the model was tuned at the low resolution and as little as possible was changed when running the high resolution experiments which may contribute to the better sea ice concentration in the low resolution experiment.)

strait_locations
Location of ocean gateways into the Arctic. Red: Bering Strait, Green: Davis Strait, Blue: Fram Strait, Magenta: Barents Sea
ocean_heat_transport_GC2
Figure 3. Ocean energy transport for each resolution experiment through the four ocean gateways into the Arctic. The four gateways form a closed boundary into the Arctic.

We find that the ocean is very sensitive to the differences in the surface winds between the high and low resolution experiments. In different regions the differences in winds arise from different processes. In the Davis Strait the effect of coastal tiling is important, where at higher resolution a smaller area is covered by atmospheric grid cells that cover both land and ocean. In a cell covering both land and ocean the model usually produces wind speeds to low for over the ocean. Therefore in the higher resolution experiment we find that there are higher wind speeds over the ocean near the coast. Whereas over the Fram Strait and the Barents Sea instead we find that there are large scale atmospheric circulation changes that give the differences in surface winds between the experiments.

References

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J. & Jones, J. 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627–637, http://dx.doi.org/10.1038/ngeo2234

Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., & Meier, W. N., 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39(16), 1–7, https://doi.org/10.1029/2012GL052676

Tsubouchi, T., Bacon, S., Naveira Garabato, A. C., Aksenov, Y., Laxon, S. W., Fahrbach, E., Beszczynska-Möller, A., Hansen, E., Lee, C.M., Ingvaldsen, R. B. 2018: The Arctic Ocean Seasonal Cycles of Heat and Freshwater Fluxes: Observation-Based Inverse Estimates. Journal of Physical Oceanography, 48(9), 2029–2055, http://journals.ametsoc.org/doi/10.1175/JPO-D-17-0239.1

The Colour of Climate

Email: Jake.J.Gristey@noaa.gov
Web: https://cires.colorado.edu/researcher/jake-j-gristey

Gristey, J.J., J.C. Chiu, R.J. Gurney, K.P. Shine, S. Havemann, J. Thelen, and P.G. Hill, 2019: Shortwave Spectral Radiative Signatures and Their Physical Controls. J. Climate, 32, 4805–4828, https://doi.org/10.1175/JCLI-D-18-0815.1

Sunlight reaching the Earth is comprised of many different colours, or wavelengths. Some of these wavelengths cannot be detected by the human eye, such as the ultraviolet (UV) wavelengths which famously cause sunburn. Fortunately for us, the most intense sunlight is found at harmless visible wavelengths and reaches the surface with relative ease, allowing us to see during the daytime. Sometimes nature aligns to dramatically separate these wavelengths, producing beautiful optical phenomena such as rainbows. More often, however, the properties of the atmosphere and surface lead to intricate differences in the wavelengths of sunlight that get reflected back to space (Fig. 1).

Fig. 1. Schematic showing how the spectral structure of reflected sunlight at the top of the atmosphere can emerge via interactions with various atmospheric/surface properties*.

Satellites have observed specific wavelengths of reflected sunlight to infer the properties and evolution of our climate system for decades. Satellites have also independently measured the total amount of reflected sunlight across all wavelengths to track energy flows into and out of the Earth system. It has been less common to make spectrally resolved measurements at many contiguous wavelengths throughout the solar spectrum. In theory, these measurements would simultaneously provide the total energy flow – by integrating over the wavelengths – and the “spectral signature” associated with all atmospheric and surface properties that determined this energy flow. Our recent study puts this theory to the test.

Almost 100,000 spectra of reflected sunlight were computed at the top-of-atmosphere under a diverse variety of conditions. Applying a clustering technique to the computed spectra (which identifies “clusters” in a dataset with similar characteristics) revealed distinct spectral signatures. When we examined the atmospheric and surface properties that were used to compute the spectra belonging to each spectral signature, a remarkable separation of physical properties was found (Fig. 2).

Fig. 2. (top row) Three of the extracted “spectral signatures” of reflected sunlight. (bottom row) Their relationship to the underlying atmospheric/surface properties. Seven others are shown in the published article.

Surprisingly, the separation of physical properties by distinct spectral signatures, as shown in Fig. 2, was found to be robust up to the largest spatial scales tested of 240 km. This is similar to the footprint size of one of the only previous satellite instruments to measure contiguous spectrally resolved reflected sunlight, the SCIAMACHY**, providing an exciting opportunity to investigate spectral signature variability in real observations. We found that the frequency of spectral signatures in real SCIAMACHY observations followed the expected behaviour during the West African monsoon very closely (Fig. 3).

Fig. 3. (left) The annual cycle of precipitation [mm/day] associated with the West African monsoon, and (right) frequency of the three “spectral signatures” shown in Fig. 2 from real satellite observations during 2010 over West Africa.

Overall, the separation of physical properties by distinct spectral signatures demonstrates great promise for monitoring evolution of the Earth system directly from spectral reflected sunlight in the future.

Funding acknowledgement: This work was supported by the Natural Environment Research Council (NERC) SCience of the Environment: Natural and Anthropogenic pRocesses, Impacts and Opportunities (SCENARIO) Doctoral Training Partnership (DTP), Grant NE/L002566/ 1, and from the European Union 7th Framework Programme under Grant Agreement 603502 [EU project Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA)]

*Note several key simplifications in Fig. 1 for the purposes of visual effect: atmospheric properties are separated, but often occur simultaneously and throughout the atmosphere; the depicted path of sunlight is one option, but sunlight emerging at the top of the atmosphere will come from many different paths; sunlight reflected by the surface will need to travel back through the same gases (and likely other properties) on its way back to the top of the atmosphere, which is not shown. The spectra in Fig. 1 are generated with SBDART using a set of arbitrary but realistic atmospheric and surface properties.

** SCIAMACHY = Scanning Imaging Absorption Spectrometer for Atmospheric Chartography.

Jake completed his PhD at Reading in 2018 and now works at the NOAA Earth System Research Laboratory (ESRL) in Boulder, Colorado.

Island convection and its many shapes and forms: a closer look at cloud trails

Despite decades of research, convection continues to be one of the major sources of uncertainty in weather and climate models. This is because convection occurs across scales that are smaller than the numerical grids used to integrate these models – in other words, the convection is not resolved in the model. However, its role in the vertical transport of heat, moisture, and momentum could still be important for phenomena that are resolved so the impact of convection is estimated from a set of diagnosed parameters (i.e. a parameterisation scheme).

As the community moves toward modelling with smaller numerical grids, convection can be partially resolved. This numerical regime consisting of partially resolved convection is sometimes called the ‘Convection Grey Zone’. New parameterisations for convection are required for the convection grey zone as the underlying assumptions for existing parameterisations are no longer valid.

With smaller grid spacing, other important processes are better represented – for example, the interaction with the surface. In some coarse climate models, many islands are so small that they are neglected altogether. We know that islands regularly force different kinds of convection and so they offer a real-world opportunity to study the kind of locally driven convection that can now be resolved in operational weather models. My thesis aims to take existing research on small islands a step further by considering the problem from the perspective of convection parameterisation.

Bermuda_DEM
Figure 1. Topographic map of Bermuda showing the coastline in blue, elevation above sea level in grey shading, and the highest elevation is marked by a red triangle.

Bermuda (where I’m from) is a small, relatively flat island located in the western North Atlantic Ocean (e.g. Fig. 1). Cloud trails (CT) here have been unwittingly incorporated into a local legend surrounding an 18th century heist during the American Revolution. This plot to steal British gunpowder to help the American revolutionaries involved the American merchant ‘Captain Morgan’, whose ghost is said to haunt Bermuda on hot, humid summer evenings when dark cloud looms over the east end of the island. This legend is where the local name for the cloud trail “Morgan’s Cloud” comes from (BWS Glossary, 2019).

This story highlights what a CT might look like from a ground observer – a dark cloud which hangs over one end of the island. In fact, CT could only be observed from the ground until research aircraft became feasible in the 1940s and 50s. Aircraft measurements revealed the internal structure of the CT including an associated plume of warmer, drier air immediately downwind of the island.

In the coming decades, the combination of publicly available high-quality satellite imagery and computing advances introduced new avenues for research. This allowed case studies of one-off events and short satellite climatologies constructed by hand (e.g. Nordeen et al., 2001).

Observed from space, CTs look like bands of cloud that stream downwind of, and appear anchored to, small islands. They can be found downwind of small islands around the world, mainly in the tropics and subtropics.

fig1
Figure 2. (Johnston et al., 2018) Observations from visible satellite imagery showing (a) an example CT, (b) an example NT, and (c) an example obscured scene. Imagery from GOES-13 0.64 micron visible channel. In each instance a wind barb indicating the wind speed (knots) and direction. Full feathers on the wind barbs represent 10 kts, and half feathers 5 kts.

In my thesis, we design an algorithm to automate the objective classification of satellite imagery into one of three categories (Fig. 2): CT, NT (Non-Trail), and OB (Obscured). We find that the algorithm results are comparable to manually classified satellite imagery and can construct a much longer climatology of CT occurrence quickly and objectively (Johnston et al., 2018). The algorithm is applied to satellite imagery of Bermuda for May through October of 2012-2016.

We find that CT occurrence peaks in the afternoon and in July. This highlights the strong link to the solar cycle. Furthermore, radiosonde measurements taken via weather balloon by the Bermuda Weather Service show that cloud base height (which is controlled by the low-level humidity) is too high for NT days. This reduces cloud formation in general and prevents the CT cloud band forming. Meanwhile, large-scale disturbances result in widespread cloud cover on OB days (Johnston et al., 2018).

These observations and measurements can only tell us so much. A case CT day is then used to design numerical experiments to consider poorly observed features of the phenomenon. For example, the interplay between the warm plume, CT circulation, and the clouds themselves. These experiments are completed with very small grid spacing (i.e. 100 m vs. the ~10 km in weather models, and ~50 km in climate models). This allows us to confidently simulate both convection and a small island without the use of parameterisations.

Within the boundary layer which buffers the impacts from surface on the free atmosphere, a circulation forms downwind of the heated island. We show that this circulation consists of near-surface convergence, which leads to a band of ascent, and a region of divergence near the top of the boundary layer. This circulation acts as a coherent structure tying the boundary layer to convection in the free atmosphere above.

Further experiments which target the relationship between the island heating, low-level humidity, and wind speed have been completed. These experiments reveal a range of circulation responses. For instance, responses associated with no cloud, mostly passive cloud, and strongly precipitating cloud can result.

We are now using the set of CT experiments to develop a set of expectations upon which existing and future convection parameterisation schemes can be tested and evaluated. We plan to use a selection of the CT experiments with grid spacing increased to values consistent with current operational grey zone models. We believe that this will help to highlight deficiencies in existing parameterisation schemes and focus efforts for the improvement of future schemes.

Further Reading:

Bermuda Weather Service (BWS) Glossary, accessed 2019: Morgan’s Cloud/Morgan’s Cloud (Story). https://www.weather.bm/glossary/glossary.asp

Johnston, M. C., C. E. Holloway, and R. S. Plant, 2018: Cloud Trails Past Bermuda: A Five-Year Climatology from 2012-2016. Mon. Wea. Rev., 146, 4039-4055, https://doi.org/10.1175/MWR-D-18-0141.1

Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, 2007: Modification of the atmospheric boundary layer by a small island: Observations from Nauru. Mon. Wea. Rev., 135, 891-905, https://doi.org/10.1175/MWR3319.1

Nordeen, M. K., P. Minnis, D. R. Doelling, D. Pethick, and L. Nguyen, 2001: Satellite observations of cloud plumes generated by Nauru. Geophys. Res. Lett., 28, 631-634, https://doi.org/10.1029/2000GL012409

APPLICATE General Assembly and Early Career Science event

5

On 28th January to 1st February I attended the APPLICATE (Advanced Prediction in Polar regions and beyond: modelling, observing system design and LInkages associated with a Changing Arctic climaTE (bold choice)) General Assembly and Early Career Science event at ECMWF in Reading. APPLICATE is one of the EU Horizon 2020 projects with the aim of improving weather and climate prediction in the polar regions. The Arctic is a region of rapid change, with decreases in sea ice extent (Stroeve et al., 2012) and changes to ecosystems (Post et al., 2009). These changes are leading to increased interest in the Arctic for business opportunities such as the opening of shipping routes (Aksenov et al., 2017). There is also a lot of current work being done on the link between changes in the Arctic and mid-latitude weather (Cohen et al., 2014), however there is still much uncertainty. These changes could have large impacts on human life, therefore there needs to be a concerted scientific effort to develop our understanding of Arctic processes and how this links to the mid-latitudes. This is the gap that APPLICATE aims to fill.

The overarching goal of APPLICATE is to develop enhanced predictive capacity for weather and climate in the Arctic and beyond, and to determine the influence of Arctic climate change on Northern Hemisphere mid-latitudes, for the benefit of policy makers, businesses and society.

APPLICATE Goals & Objectives

Attending the General Assembly was a great opportunity to get an insight into how large scientific projects work. The project is made up of different work packages each with a different focus. Within these work packages there are then a set of specific tasks and deliverables spread out throughout the project. At the GA there were a number of breakout sessions where the progress of the working groups was discussed. It was interesting to see how these discussions worked and how issues, such as the delay in CMIP6 experiments, are handled. The General Assembly also allows the different work packages to communicate with each other to plan ahead, and for results to be shared.

2
An overview of APPLICATE’s management structure take from: https://applicate.eu/about-the-project/project-structure-and-governance

One of the big questions APPLICATE is trying to address is the link between Arctic sea-ice and the Northern Hemisphere mid-latitudes. Many of the presentations covered different aspects of this, such as how including Arctic observations in forecasts affects their skill over Eurasia. There were also initial results from some of the Polar Amplification (PA)MIP experiments, a project that APPLICATE has helped coordinate.

1
Attendees of the Early Career Science event co-organised with APECS

At the end of the week there was the Early Career Science Event which consisted of a number of talks on more soft skills. One of the most interesting activities was based around engaging with stakeholders. To try and understand the different needs of a variety of stakeholders in the Arctic (from local communities to shipping companies) we had to try and lobby for different policies on their behalf. This was also a great chance to meet other early career scientists working in the field and get to know each other a bit more.

What a difference a day makes, heavy snow getting the ECMWF’s ducks in the polar spirit.

Email: sally.woodhouse@pgr.reading.ac.uk

References

Aksenov, Y. et al., 2017. On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice. Marine Policy, 75, pp.300–317.

Cohen, J. et al., 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), pp.627–637.

Post, E. & Others, 24, 2009. Ecological Dynamics Across the Arctic Associated with Recent Climate Change. Science, 325(September), pp.1355–1358.

Stroeve, J.C. et al., 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39(16), pp.1–7.

The Role of the Cloud Radiative Effect in the Sensitivity of the Intertropical Convergence Zone to Convective Mixing

Email: j.f.talib@pgr.reading.ac.uk

Talib, J., S.J. Woolnough, N.P. Klingaman, and C.E. Holloway, 2018: The Role of the Cloud Radiative Effect in the Sensitivity of the Intertropical Convergence Zone to Convective Mixing. J. Climate, 31, 6821–6838, https://doi.org/10.1175/JCLI-D-17-0794.1

Rainfall in the tropics is commonly associated with the Intertropical Convergence Zone (ITCZ), a discontinuous line of convergence collocated at the ascending branch of the Hadley circulation, where strong moist convection leads to high rainfall. What controls the location and intensity of the ITCZ remains a fundamental question in climate science.

ensemble_precip_neat_thesis
Figure 1: Annual-mean, zonal-mean tropical precipitation (mm day-1) from Global Precipitation Climatology Project (GPCP, observations, solid black line) and CMIP5 (current coupled models) output. Dashed line indicates CMIP5 ensemble mean.

In current and previous generations of climate models, the ITCZ is too intense in the Southern Hemisphere, resulting in two annual-mean, zonal-mean tropical precipitation maxima, one in each hemisphere (Figure 1).  Even if we take the same atmospheric models and couple them to a world with only an ocean surface (aquaplanets) with prescribed sea surface temperatues (SSTs), different models simulate different ITCZs (Blackburn et al., 2013).

Within a climate model parameterisations are used to replace processes that are too small-scale or complex to be physically represented in the model. Parameterisation schemes are used to simulate a variety of processes including processes within the boundary layer, radiative fluxes and atmospheric chemistry. However my work, along with a plethora of others, shows that the representation of the ITCZ is sensitive to the convective parameterisation scheme (Figure 2a). The convective parameterisation scheme simulates the life cycle of clouds within a model grid-box.

Our method of showing that the simulated ITCZ is sensitive to the convective parameterisation scheme is by altering the convective mixing rate in prescribed-SST aquaplanet simulations. The convective mixing rate determines the amount of mixing a convective parcel has with the environmental air, therefore the greater the convective mixing rate, the quicker a convective parcel will become similar to the environmental air, given fixed convective parcel properties.

AEIprecipCREon
Figure 2: Zonal-mean, time-mean (a) precipitation rates (mm day-1}$) and (b) AEI (W m-2) in simulations where the convective mixing rate is varied.

In our study, the structure of the simulated ITCZ is sensitive to the convective mixing rate. Low convective mixing rates simulate a double ITCZ (two precipitation maxima, orange and red lines in Figure 2a), and high convective mixing rates simulate a single ITCZ (blue and black lines).

We then associate these ITCZ structures to the atmospheric energy input (AEI). The AEI is the amount of energy left in the atmosphere once considering the top of the atmosphere and surface energy budgets. We conclude, similar to Bischoff and Schneider, 2016, that when the AEI is positive (negative) at the equator, a single (double) ITCZ is simulated (Figure 2b). When the AEI is negative at the equator, energy is needed to be transported towards the equator for equilibrium. From a mean circulation perspective, this take place in a double ITCZ scenario (Figure 3). A positive AEI at the equator, is associated with poleward energy transport and a single ITCZ.

blog_figure_ITCZ_simulation
Figure 3: Schematic of a single (left) and double ITCZ (right). Blue arrows denote energy transport. In a single ITCZ scenario more energy is transported in the upper branches of the Hadley circulation, resulting in a net-poleward energy transport. In a double ITCZ scenario, more energy is transport equatorward than poleward at low latitudes, leading to an equatorward energy transport.

In our paper, we use this association between the AEI and ITCZ to hypothesize that without the cloud radiative effect (CRE), atmospheric heating due to cloud-radiation interactions, a double ITCZ will be simulated. We also hypothesize that prescribing the CRE will reduce the sensitivity of the ITCZ to convective mixing, as simulated AEI changes are predominately due to CRE changes.

In the rest of the paper we perform simulations with the CRE removed and prescribed to explore further the role of the CRE in the sensitivity of the ITCZ. We conclude that when removing the CRE a double ITCZ becomes more favourable and in both sets of simulations the ITCZ is less sensitive to convective mixing. The remaining sensitivity is associated with latent heat flux alterations.

My future work following this publication explores the role of coupling in the sensitivity of the ITCZ to the convective parameterisation scheme. Prescribing the SSTs implies an arbitary ocean heat transport, however in the real world the ocean heat transport is sensitive to the atmospheric circulation. Does this sensitivity between the ocean heat transport and atmospheric circulation affect the sensitivity of the ITCZ to convective mixing?

Thanks to my funders, SCENARIO NERC DTP, and supervisors for their support for this project.

References:

Blackburn, M. et al., (2013). The Aqua-planet Experiment (APE): Control SST simulation. J. Meteo. Soc. Japan. Ser. II, 91, 17–56.

Bischoff, T. and Schneider, T. (2016). The Equatorial Energy Balance, ITCZ Position, and Double-ITCZ Bifurcations. J. Climate., 29(8), 2997–3013, and Corrigendum, 29(19), 7167–7167.

 

Hierarchies of Models

With thanks to Inna Polichtchouk.

General circulation models (GCMs) of varying complexity are used in atmospheric and oceanic sciences to study different atmospheric processes and to simulate response of climate to climate change and other forcings.

However, Held (2005) warned the climate community that the gap between understanding and simulating atmospheric and oceanic processes is becoming wider. He stressed the use of model hierarchies for improved understanding of the atmosphere and oceans (Fig. 1). Often at the bottom of the hierarchy lie the well-understood, idealized, one- or two-layer models.  In the middle of the hierarchy lie multi-layer models, which omit certain processes such as land-ocean-atmosphere interactions or moist physics. And finally, at the top of the hierarchy lie fully coupled atmosphere-ocean general circulation models that are used for climate projections. Such model hierarchies are already well developed in other sciences (Held 2005), such as molecular biology, where studying less complex animals (e.g. mice) infers something about the more complex humans (through evolution).

Model_hierarchies_Shaw_etal2016
Figure 1: Model hierarchy of midlatitude atmosphere (as used for studying storm tracks). The simplest models are on the left and the most complex models are on the right. Bottom panels show eddy kinetic energy (EKE, contours) and precipitation (shading) with increase in model hierarchy (left-to-right): No precipitation in a dry core model (left), zonally homogeneous EKE and precipitation in an aquaplanet model (middle), and zonally varying EKE and precipitation in the most complex model (right). Source: Shaw et al. (2016), Fig. B2.

Model hierarchies have now become an important research tool to further our understanding of the climate system [see, e.g., Polvani et al. (2017), Jeevanjee et al. (2017), Vallis et al. (2018)]. This approach allows us to delineate most important processes responsible for circulation response to climate change (e.g., mid-latitude storm track shift, widening of tropical belt etc.), to perform hypothesis testing, and to assess robustness of results in different configurations.

In my PhD, I have extensively used the model hierarchies concept to understand mid-latitude tropospheric dynamics (Fig. 1). One-layer barotropic and two-layer quasi-geostrophic models are often used as a first step to understand large-scale dynamics and to establish the importance of barotropic and baroclinic processes (also discussed in my previous blog post). Subsequently, more realistic “dry” non-linear multi-layer models with simple treatment for boundary layer and radiation [the so-called “Held & Suarez” setup, first introduced in Held and Suarez (1994)] can be used to study zonally homogeneous mid-latitude dynamics without complicating the setup with physical parametrisations (e.g. moist processes), or the full range of ocean-land-ice-atmosphere interactions. For example, I have successfully used the Held & Suarez setup to test the robustness of the annular mode variability (see my previous blog post) to different model climatologies (Boljka et al., 2018). I found that baroclinic annular mode timescale and its link to the barotropic annular mode is sensitive to model climatology. This can have an impact on climate variability in a changing climate.

Additional complexity can be introduced to the multi-layer dry models by adding moist processes and physical parametrisations in the so-called “aquaplanet” setup [e.g. Neale and Hoskins (2000)]. The aquaplanet setup allows us to elucidate the role of moist processes and parametrisations on zonally homogeneous dynamics. For example, mid-latitude cyclones tend to be stronger in moist atmospheres.

To study effects of zonal asymmetries on the mid-latitude dynamics, localized heating or topography can be further introduced to the aquaplanet and Held & Suarez setup to force large-scale stationary waves, reproducing the south-west to north-east tilts in the Northern Hemisphere storm tracks (bottom left panel in Fig. 1). This setup has helped me elucidate the differences between the zonally homogeneous and zonally inhomogeneous atmospheres, where the planetary scale (stationary) waves and their interplay with the synoptic eddies (cyclones) become increasingly important for the mid-latitude storm track dynamics and variability on different temporal and spatial scales.

Even further complexity can be achieved by coupling atmospheric models to the dynamic ocean and/or land and ice models (coupled atmosphere-ocean or atmosphere only GCMs, in Fig. 1), all of which bring the model closer to reality. However, interpreting results from such complex models is very difficult without having first studied the hierarchy of models as too many processes are acting simultaneously in such fully coupled models.  Further insights can also be gained by improving the theoretical (mathematical) understanding of the atmospheric processes by using a similar hierarchical approach [see e.g. Boljka and Shepherd (2018)].

References:

Boljka, L. and T.G. Shepherd, 2018: A multiscale asymptotic theory of extratropical wave–mean flow interaction. J. Atmos. Sci., 75, 1833–1852, https://doi.org/10.1175/JAS-D-17-0307.1 .

Boljka, L., T.G. Shepherd, and M. Blackburn, 2018: On the boupling between barotropic and baroclinic modes of extratropical atmospheric variability. J. Atmos. Sci., 75, 1853–1871, https://doi.org/10.1175/JAS-D-17-0370.1 .

Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Am. Meteorol. Soc., 86, 1609 – 1614.

Held, I. M. and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825–1830.

Jeevanjee, N., Hassanzadeh, P., Hill, S., Sheshadri, A., 2017: A perspective on climate model hierarchies. JAMES9, 1760-1771.

Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: the proposal. Atmosph. Sci. Lett., 1, 101–107.

Polvani, L. M., A. C. Clement, B. Medeiros, J. J. Benedict, and I. R. Simpson (2017), When less is more: Opening the door to simpler climate models. EOS, 98.

Shaw, T. A., M. Baldwin, E. A. Barnes, R. Caballero, C. I. Garfinkel, Y-T. Hwang, C. Li, P. A. O’Gorman, G. Riviere, I R. Simpson, and A. Voigt, 2016: Storm track processes and the opposing influences of climate change. Nature Geoscience, 9, 656–664.

Vallis, G. K., Colyer, G., Geen, R., Gerber, E., Jucker, M., Maher, P., Paterson, A., Pietschnig, M., Penn, J., and Thomson, S. I., 2018: Isca, v1.0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geosci. Model Dev., 11, 843-859.

Oceans in Weather and Climate Course 2018

email: r.frew@pgr.reading.ac.uk

Between the 11th-16th March myself and four other PhDs and post docs attended the Ocean in Weather and Climate (OiWC) course at the Met Office, Exeter. This NERC advanced training course was aimed at PhDs, postdocs and beyond. It provided a great opportunity to spend a week meeting other Oceanography researchers at varying stages of their career, and to expand your understanding of the oceans role in climate beyond the scope of your own work.

The week kicked off with an ice breaker where we had do some ‘Scientific speed dating’, chatting to other participants about: Where are you from? What do you work on? What is your main hobby? What is the biggest question in your field of research? This set the tone for a very interactive week full of interesting discussions between all attendees and speakers alike. Course participants were accommodated at The Globe Inn situated in Topsham, a cute village-sized town full of pastel-coloured houses, cosy pubs, art galleries, and beautiful riverside walks to stretch your legs in the evenings.

The days consisted of four 1.5 hour sessions, split up by caffeine and biscuit breaks to recharge before the next session.

Topics covered in the lecture-style talks included…

  • Dynamical Theory
  • Modelling the Ocean
  • Observations
  • Ocean-atmosphere coupling
  • Air-sea fluxes
  • High Resolution Ocean modelling in coupled forecast systems
  • The Meridional Overturning Circulation
  • The Southern Ocean in climate and climatic change
  • Climate variability on diurnal, seasonal, annual, inter-annual, decadal timescales
  • Climate extremes
  • Climate sensitivity, heat uptake and sea level.

OceanResolutionFigure
A recurring figure of the week…. taken from Helene Hewitt’s talk on high resolution ocean modelling showing ocean surface currents from HadGEM3-based global coupled models at different resolutions (eddy resolving, eddy permitting and eddy parameterised).

 

All the talks were very interesting and were followed by some stimulating discussion. Each session provided an overview of each topic and an indication of the current research questions in each area at the moment.

In the post lunch session, there were group practical sessions. These explored observational ARGO float data and model output. The practicals, written in iPython notebooks, were designed to let us play with some data, giving us a series of questions to trigger group discussions to deepen understanding of topics covered that morning.

The course also included some ‘softer’ evening talks, giving research career advice in a more informal manner. Most evenings were spent exploring the lovely riverside walks and restaurants/pubs of Topsham. The final evening was spent all together at the Cosy Club in Exeter, rounding off a very interesting and enjoyable week!