Sudden Stratospheric Warming does not always equal Sudden Snow Shoveling

Email: s.h.lee@pgr.reading.ac.uk

During winter, the poles enter permanent darkness (“the polar night”) and undergo strong radiative cooling. In the stratosphere – a dry, stable layer of the atmosphere around 10-50 km above the surface – this cooling is particularly effective. By thermal wind balance, the strong polar cooling leads to the formation of the stratospheric polar vortex (SPV), a planetary scale westerly circulation that sits atop each winter pole (Figure 1).

Figure 1: The Arctic stratospheric polar vortex, here shown at 10 hPa, on March 12, 2019. Geopotential height is contoured, and filled colours show the wind speed in m/s. The zonal-mean zonal wind at 60°N is shown in the bottom left, a commonly used diagnostic of the strength of the SPV. After Figure 6 in Lee and Butler (2019).

In the Northern Hemisphere, the SPV is highly variable, thanks to the generation of large planetary waves in the mid-latitude westerly flow (driven primarily by mountains and land-sea contrast around the continents), which can propagate vertically into the stratosphere and break there, decelerating and deforming the SPV and warming the stratosphere.  In the Antarctic, the presence of the Southern Ocean in the mid-to-high latitudes encircling Antarctica means no similar waves are typically produced. The Antarctic SPV is therefore much stronger than its Arctic counterpart, which is why the ozone hole developed there rather than over the Arctic – with the colder temperatures inside the vortex allowing for the formation of polar stratospheric clouds, which catalyse the reactions that deplete ozone.

Now, since all the weather we experience takes place in the troposphere, you might wonder why we should worry about what happens in the layer above that. In the past, numerical weather prediction models did not resolve the stratosphere, because it wasn’t considered worth the extra computational resources. However, it is now known that the state of the SPV can act as a boundary condition to weather forecasts (especially long-range forecasts that extend beyond 2 weeks ahead, e.g. Scaife et al. (2016)) in a similar way to sea surface temperatures (SSTs). One of the reasons for this is the longer timescales present in the stratosphere (also analogous to SSTs) compared with tropospheric weather systems – an anomaly present in the stratosphere has a long persistence time. But how do these stratospheric anomalies influence the weather we experience?

Let’s take one particularly exciting case of SPV variability: major sudden stratospheric warmings (SSWs). SSWs (defined by the 10 hPa 60°N zonal-mean zonal wind reversing from westerlies to easterlies) occur on average 6 times per decade (Butler et al. 2017) and are associated with either a displacement of the SPV off the Pole, or a split of the SPV into two daughter vortices. Coincident with this is a rapid heating of the polar stratosphere (~50°C in a few days) due to adiabatic warming of descending air – hence the name. The most recent major SSW occurred on 2 January 2019 (Figure 2), but one also occurred on 12 February 2018.

Figure 2: As in Figure 1 but for 2 January 2019 (after Figure 4 in Lee and Butler (2019)).

Following a major SSW, the easterly winds descend through the stratosphere over the next few weeks and tend to persist for weeks to months in the lower stratosphere. What happens beneath that in the troposphere is then more varied, but on average there is a transition to a negative Northern Annular Mode (NAM). In a negative NAM, the mid-latitude westerlies associated with the tropospheric jet stream weaken and shift equatorward, increasing the likelihood of cold air outbreaks (and, yes, snow!) in places like the UK and northern Europe (Figure 3). However, that’s only the average response!

Figure 3: Average surface temperature anomaly for days 0-30 following all major SSWs in ERA-Interim 1979-2014. [Source: SSW Compendium]

In February-March 2018, we did indeed see this response following a major SSW – immortalised as the ‘Beast from the East’ with record-breaking cold weather and heavy snowfall in the UK (e.g. Greening and Hodgson 2019). But following the January 2019 SSW, there was no similar weather pattern. Figure 4 shows a cross-section of polar cap geopotential height anomalies (analogous to the NAM). Reds effectively indicate weaker westerly winds, and the major SSW is evident in the centre (second dashed line from the left). However, it doesn’t persistently “drip” down into the troposphere below 200 hPa, with only a brief “drip” in early February 2019. For the most part, the stratosphere and troposphere did not “talk” to each other.

Figure 4: 60-90°N geopotential height anomaly time-height cross-section for August 2018-May 2019. Vertical dashed lines indicate (left-right) the SPV spin-up, the major SSW, a strong vortex event (Tripathi et al. 2015), and the vortex dissipation. (After Figure 8 in Lee and Butler (2019).)

This SSW was thus “non-downward propagating” (Karpechko et al. 2017), which is the case with somewhere close to half of the observed events.

Why?

Some research suggests this may be due to the type of SSW (split vs. displacement, e.g. Mitchell et al. 2013), the tropospheric weather regimes present following the SSW (e.g. Charlton-Perez et al. 2018), the evolution of the SSW (e.g. Karpechko et al. 2017), the interaction of the vertically-propagating waves with the SPV at the time of the SSW (e.g. Kodera et al. 2016), or some combination of those. Perhaps other forcing from the troposphere may dominate over the signal from the stratosphere – such as the teleconnection of the Madden-Julian Oscillation (MJO) to the North Atlantic weather regimes (e.g. Cassou 2008).

Thus, whilst an SSW may make cold weather more likely, it’s by no means guaranteed – and we still don’t fully understand the mechanisms involved with downward coupling. That’s one of the reasons why, regardless of what the tabloids may tell you, sudden stratospheric warming does not always guarantee sudden snow shoveling!

References

Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth System Science Data, https://doi.org/10.5194/essd-9-63-2017

Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, https://doi.org/10.1038/nature07286

Charlton-Perez, A. J., L. Ferranti, and R. W. Lee, 2018: The influence of the stratospheric state on North Atlantic weather regimes. Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.3280

Greening, K., and A. Hodgson, 2019: Atmospheric analysis of the cold late February and early March 2018 over the UK. Weather, https://doi.org/10.1002/wea.3467

Karpechko, A. Yu., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.3017

Kodera, K., H. Mukougawa, P. Maury, M. Ueda, and C. Claud, 2016: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. Journal of Geophysical Research: Atmospheres, https://doi.org/10.1002/2015JD023359

Lee, S. H., and A. H. Butler, 2019: The 2018-2019 Arctic stratospheric polar vortex. Weather, https://doi.org/10.1002/wea.3643

Mitchell, D. M., L. J. Gray, J. Antsey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The Influence of Stratospheric Vortex Displacements and Splits on Surface Climate. Journal of Climate, https://doi.org/10.1175/JCLI-D-12-00030.1

Scaife, A. A., A. Yu. Karpechko, M. P. Baldwin, A. Brookshaw, A. H. Butler, R. Eade, M. Gordon, C. MacLachlan, N. Martin, N. Dunstone, and D. Smith, 2016: Seasonal winter forecasts and the stratosphere. Atmospheric Science Letters, https://doi.org/10.1002/asl.598

Tripathi, O. P, A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environmental Research Letters, https://doi.org/10.1088/1748-9326/10/10/104007

The impact of atmospheric model resolution on the Arctic

Email: sally.woodhouse@pgr.reading.ac.uk

The Arctic region is rapidly changing, with surface temperatures warming at around twice the global average and sea ice extent is rapidly declining, particularly in the summer. These changes affect the local ecosystems and people as well as the rest of the global climate. The decline in sea ice has corresponded with cold winters over the Northern Hemisphere mid-latitudes and an increase in other extreme weather events (Cohen et al., 2014). There are many suggested mechanisms linking changes in the sea ice to changes in the stratospheric jet, midlatitude jet and storm tracks; however this is an area of active research, with much ongoing debate.

Stroeve_et_al-2012-fig2a
Figure 1. Time-series of September sea ice extent from 20 CMIP5 models (colored lines), individual ensemble members are dotted lines and the individual model mean is solid. Multi-model ensemble mean from a subset of the models is shown in solid black with +/- 1 standard deviation in dotted black. The red line shows observations. From Stroeve et al. (2012)

It is therefore important that we are able to understand and predict the changes in the Arctic, however there is still a lot of uncertainty. Stroeve et al. (2012) calculated time series of September sea ice extent for different CMIP5 models, shown in Figure 1. In general the models do a reasonable job of reproducing the recent trends in sea ice decline, although there is a large inter-model spread and and even larger spread in future projections. One area of model development is increasing the horizontal resolution – where the size of the grid cells used to calculate the model equations is reduced.

The aim of my PhD is to investigate the impact that climate model resolution has on the representation of the Arctic climate. This will help us understand the benefits that we can get from increasing model resolution. The first part of the project was investigating the impact of atmospheric resolution. We looked at three experiments (using HadGEM3-GC2), each at a different atmospheric resolutions: 135km (N512), 60km (N216) and 25km (N96).

sea_ice_concentration_obs_GC2
Figure 2. Annual mean sea ice concentration for observations (HadISST) and the bias of each different experiment from the observations N96: low resolution, N216: medium resolution, N512: high resolution.

The annual mean sea ice concentration for observations and the biases of the 3 experiments are shown in Figure 2. The low resolution experiment does a good job of producing the sea extent seen in observations with only small biases in the marginal sea ice regions. However, in the higher resolution experiments we find that the sea ice concentration is much lower than the observations, particularly in the Barents Sea (north of Norway). These changes in sea ice are consistent with warmer temperatures in the high resolution experiments compared to the low resolution.

To understand where these changes have come from we looked at the energy transported into the ocean by the atmosphere and the ocean. We found that there is an increase in the total energy being transported into the Arctic which is consistent with the reduced sea ice and warmer temperatures. Interestingly, the increase in energy is being transported into the Arctic by the ocean (Figure 3), even though it is the atmospheric resolution that is changing between the experiments. In the high resolution experiments the ocean energy transport into the Arctic, 0.15 petawatts (PW), is in better agreement with observational estimates, 0.154 PW, from Tsubouchi et al. (2018). Interestingly, this is in contrast to the worse representation of sea ice concentration in the high resolution experiments. (It is important to note that the model was tuned at the low resolution and as little as possible was changed when running the high resolution experiments which may contribute to the better sea ice concentration in the low resolution experiment.)

strait_locations
Location of ocean gateways into the Arctic. Red: Bering Strait, Green: Davis Strait, Blue: Fram Strait, Magenta: Barents Sea

ocean_heat_transport_GC2
Figure 3. Ocean energy transport for each resolution experiment through the four ocean gateways into the Arctic. The four gateways form a closed boundary into the Arctic.

We find that the ocean is very sensitive to the differences in the surface winds between the high and low resolution experiments. In different regions the differences in winds arise from different processes. In the Davis Strait the effect of coastal tiling is important, where at higher resolution a smaller area is covered by atmospheric grid cells that cover both land and ocean. In a cell covering both land and ocean the model usually produces wind speeds to low for over the ocean. Therefore in the higher resolution experiment we find that there are higher wind speeds over the ocean near the coast. Whereas over the Fram Strait and the Barents Sea instead we find that there are large scale atmospheric circulation changes that give the differences in surface winds between the experiments.

References

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J. & Jones, J. 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627–637, http://dx.doi.org/10.1038/ngeo2234

Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., & Meier, W. N., 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39(16), 1–7, https://doi.org/10.1029/2012GL052676

Tsubouchi, T., Bacon, S., Naveira Garabato, A. C., Aksenov, Y., Laxon, S. W., Fahrbach, E., Beszczynska-Möller, A., Hansen, E., Lee, C.M., Ingvaldsen, R. B. 2018: The Arctic Ocean Seasonal Cycles of Heat and Freshwater Fluxes: Observation-Based Inverse Estimates. Journal of Physical Oceanography, 48(9), 2029–2055, http://journals.ametsoc.org/doi/10.1175/JPO-D-17-0239.1

The Variation of Geomagnetic Storm Duration with Intensity

Email: carl.haines@pgr.reading.ac.uk


Haines, C., M. J. Owens, L. Barnard, M. Lockwood, and A. Ruffenach, 2019: The Variation of Geomagnetic Storm Duration with Intensity. Solar Physics, 294, https://doi.org/10.1007/s11207-019-1546-z


Variability in the near-Earth solar wind conditions can adversely affect a number of ground- and space-based technologies. Some of these space weather impacts on ground infrastructure are expected to increase primarily with geomagnetic storm intensity, but also storm duration, through time-integrated effects. Forecasting storm duration is also necessary for scheduling the resumption of safe operating of affected infrastructure. It is therefore important to understand the degree to which storm intensity and duration are related.

In this study, we use the recently re-calibrated aa index, aaH to analyse the relationship between geomagnetic storm intensity and storm duration over the past 150 years, further adding to our understanding of the climatology of geomagnetic activity. In particular, we construct and test a simple probabilistic forecast of storm duration based on storm intensity.

Using a peak-above-threshold approach to defining storms, we observe that more intense storms do indeed last longer but with a non-linear relationship (Figure 1).

Figure 1: The mean duration (red) and number of storms (blue) plotted as a function of storm intensity.

Next, we analysed the distribution of storm durations in eight different classes of storms dependent on the peak intensity of the storm. We found them to be approximately lognormal with parameters depending on the storm intensity. A lognormal distribution is defined by the mean of the logarithm of the values, μ, and the standard deviation of the logarithm of the values, σ. These parameters were found from the observed durations in each intensity class through Maximum Likelihood Estimation (MLE) and used to create a lognormal distribution, plotted in Figure 2 in dark purple. The light purple distribution shows a histogram of the observed data as an estimate of the probability density function (PDF). By eye, the lognormal distribution provides a reasonable first-order match at all intensity thresholds.

Figure 2: The distribution of duration for storms with a peak between 150 and 190nT.

On this basis we created a method to probabilistically predict storm duration given peak intensity. For each of the peak intensity classes, we have calculated the values of μ and σ for the lognormal fits to the duration distributions shown as the black points in Figure 3. It is clear from the points in the left panel of Figure 3 that μ increases as intensity increases, agreeing with the previous results in Figure 1 (i.e., duration increases as intensity increases).

The parameter μ can be approximated as a function of storm intensity by:

μ(intensity) = A ln (B intensity−C)

where A, B and C are free parameters. A least squares fit was implemented, and the coefficients A, B and C were found to be 0.455, 4.632, 283.143 respectively and this curve is plotted, along with uncertainty bars, in Figure 3 (left). Although the fit is based on weighted bin-centres of storm intensity, the equation can be used to interpolate for a given value of intensity. σ can be approximated by a linear fit to give σ as a function of the peak intensity. Figure 3 (right) shows the best fit line which has a shallow gradient of −5.08×10−4 and y-intercept at 0.659.

Figure 3: (Left) The mean of the log-space as a function of intensity. (Right) The standard deviation of the log-space as a function of intensity.

These equations can be used to find lognormal parameters as a function of storm peak intensity. From these, a distribution of duration can be created and hence a probabilistic estimate of the duration of this storm is available. This can be used to predict the probability a storm will last at least e.g. 24 hours. Figure 4 shows the output of the model for a range of storm peak intensity compared against a test set of the aaH index. The model has good agreement with the observations and provides a robust method for estimating geomagnetic storm duration.

The results demonstrate significant advancements in not only understanding the properties and structure of storms, but also how we can predict and forecast these dynamic and hazardous events.

For more information, please see the open-access paper.

Figure 4: The probability that a storm will last at least 24 hours plotted as a function of storm intensity. The black line shows the observed probability and the red line shows the model output.

How much energy is available in a moist atmosphere?

Email: b.l.harris@pgr.reading.ac.uk

It is often useful to know how much energy is available to generate motion in the atmosphere, for example in storm tracks or tropical cyclones. To this end, Lorenz (1955) developed the theory of Available Potential Energy (APE), which defines the part of the potential energy in the atmosphere that could be converted into kinetic energy.

To calculate the APE of the atmosphere, we first find the minimum total potential energy that could be obtained by adiabatic motion (no heat exchange between parcels of air). The atmospheric setup that gives this minimum is called the reference state. This is illustrated in Figure 1: in the atmosphere on the left, the denser air will move horizontally into the less dense air, but in the reference state on the right, the atmosphere is stable and no motion would occur. No further kinetic energy is expected to be generated once we reach the reference state, and so the APE of the atmosphere is its total potential energy minus the total potential energy of the reference state.

Figure 1: Construction of the APE reference state for a 2D atmosphere. The purple shading indicates the density of the air; darker colours mean denser air. In the actual state, the density stratification is not completely horizontal, which leads to the air motion shown by the orange arrows. The reference state has a stable, horizontal density stratification, so the air will not move without some disturbance.

If we think about an atmosphere that only varies in the vertical direction, it is easy to find the reference state if the atmosphere is dry. We assume that the atmosphere consists of a number of air parcels, and then all we have to do is place the parcels in order of increasing potential temperature with height. This ensures that density decreases upwards, so we have a stable atmosphere.

However, if we introduce water vapour into the atmosphere, the situation becomes more complicated. When water vapour condenses, latent heat is released, which increases the temperature of the air, decreasing its density. One moist air parcel can be denser than another at a certain height, but then less dense if they are lifted to a height where the first parcel condenses but the second one does not. The moist reference state therefore depends on the exact method used to sort the parcels by their density.

It is possible to find the rearrangement of the moist air parcels that gives the minimum possible total potential energy, using the Munkres (1957) sorting algorithm, but this takes a very long time for a large number of parcels. Lots of different sorting algorithms have therefore been developed that try to find an approximate moist reference state more quickly (the different types of algorithms are explained by Stansifer (2017) and Harris and Tailleux (2018)). However, these sorting algorithms do not try to analyse whether the parcel movements they are simulating could actually happen in the real atmosphere—for example, many work by lifting all parcels to a fixed level in the atmosphere, without considering whether the parcels could feasibly move there—and there has been little understanding of whether the reference states they find are accurate.

As part of my PhD, I have performed the first assessment of these sorting algorithms across a wide range of atmospheric data, using over 3000 soundings from both tropical island and mid-latitude continental locations (Harris and Tailleux, 2018). This showed that whilst some of the sorting algorithms can provide a good estimate of the minimum potential energy reference state, others are prone to computing a rearrangement that actually has a higher potential energy than the original atmosphere.

We also showed that a new algorithm, which does not rely on sorting procedures, can calculate APE with comparable accuracy to the sorting algorithms. This method finds a layer of near-surface buoyant parcels, and performs the rearrangement by lifting the layer upwards until it is no longer buoyant. The success of this method suggests that we do not need to rely on possibly unphysical sorting algorithms to calculate moist APE, but that we can move towards approaches that consider the physical processes generating motion in a moist atmosphere.

References

Harris, B. L. and R. Tailleux, 2018: Assessment of algorithms for computing moist available potential energy. Q. J. R. Meteorol. Soc., 144, 1501–1510, https://doi.org/10.1002/qj.3297

Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167, https://doi.org/10.3402/tellusa.v7i2.8796

Munkres, J., 1957: Algorithms for the Assignment and Transportation Problems. J. Soc. Ind. Appl. Math., 5, 32–38, https://doi.org/10.1137/0105003

Stansifer, E. M., P. A. O’Gorman, and J. I. Holt, 2017: Accurate computation of moist available potential energy with the Munkres algorithm. Q. J. R. Meteorol. Soc., 143, 288–292, https://doi.org/10.1002/qj.2921

Combining multiple streams of environmental data into a soil moisture dataset

Email: a.a.ejigu@pgr.reading.ac.uk

An accurate estimate of soil moisture has a vital role in a number of scientific research areas. It is important for day to day numerical weather prediction, extreme weather event forecasting such as for flooding and droughts, crop suitability to a particular region and crop yield estimation to mention a few. However, in-situ measurements of soil moisture are generally expensive to obtain, labour intensive and have sparse spatial coverage. To assist this, satellite measurements and models are used as a proxy of the ground measurement. Satellite missions such as SMAP (Soil Moisture Active Passive) observe the soil moisture content for the top few centimetres from the surface of the earth. On the other hand, soil moisture estimates from models are prone to errors due to model errors in representing the physics or the parameter values used.

Data assimilation is a method of combining numerical models with observed data and its error statistics. In principle, the state estimate after data assimilation is expected to be better than the standalone numerical model estimate of the state or the observations. There are a variety of data assimilation methods: Variational, Sequential, Monte Carlo methods and a combination of them. The Joint UK Land Environment Simulator (JULES) is a community land surface model which calculates several land surface processes such as surface energy balance and carbon cycle and used by the Met Office – the UK’s national weather service.

My PhD aims to improve the estimate of soil moisture from the JULES model using satellite data from SMAP and the Four-Dimensional Ensemble Variational (4DEnVar) data assimilation method introduced by Liu et al. (2008) and implemented by Pinnington (2019; under review), a combination of Variational and Ensemble data assimilation methods. In addition to satellite soil moisture data assimilation, ground measurement soil moisture data from Oklahoma Mesoscale Networks (Mesonet) are also assimilated.

Figure 1: Top layer prior, background, posterior and SMAP satellite observed volumetric soil moisture for Antlers station in Oklahoma Mesonet, for the year 2017.
Figure 2: Distance of prior soil moisture and posterior soil moisture from the concurrent soil moisture SMAP observations explained in Figure 1.

The time series of soil moisture from the JULES model (prior), soil moisture obtained after assimilation (posterior) and observed soil moisture for Antlers station in Mesonet are depicted in Figure 1. Figure 2 shows the distance of prior soil moisture estimates and posterior soil moisture estimates from the assimilated observations. The smaller the distance is the better as the primary objective of data assimilation is to optimally fit the model trajectory into the observations and background. From Figure 1 and Figure 2 we can conclude that posterior soil moisture estimates are closer to the observations compared to the prior. Looking at particular months, prior soil moisture is closer to observations compared to the posterior around January and October. This is due to the fact that 4DEnVar considers all the observations to calculate an optimal trajectory which fits observations and background. Hence, it is not surprising to see the prior being closer to the observations than the posterior in some places.

Data assimilation experiments are repeated for different sites in Mesonet with varying soil type, topography and different climate and with different soil moisture dataset. In all the experiments, we have observed that posterior soil moisture estimates are closer to the observations than the prior soil moisture estimates. As a verification, soil moisture reanalysis is calculated for the year 2018 and compared to the observations. Figure 3 is SMAP soil moisture data assimilated into the JULES model and hind-casted for the following year.

Figure 3: Hind-casted soil moisture for 2018 based on posterior soil texture corresponding to the result obtained from assimilated mesonet soil moisture data for 2017.

References

Liu, C., Q. Xiao, and B. Wang, 2008: An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part I: Technical Formulation and Preliminary Test. Mon. Weather Rev., 136 (9), 3363–3373., https://doi.org/10.1175/2008MWR2312.1

Pinnington, E., T. Quaife, A. Lawless, K. Williams, T. Arkebauer, and D. Scoby, 2019: The Land Variational Ensemble Data Assimilation fRamework:
LaVEnDAR. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2019-60

Characterising the seasonal and geographical variability in tropospheric ozone, stratospheric influence and recent changes

Email: r.s.williams@pgr.reading.ac.uk

Williams, R. S., Hegglin, M. I., Kerridge, B. J., Jöckel, P., Latter, B. G., and Plummer, D. A.: Characterising the seasonal and geographical variability in tropospheric ozone, stratospheric influence and recent changes, Atmos. Chem. Phys., 19, 3589–3620, https://doi.org/10.5194/acp-19-3589-2019, 2019.


Approximately 90 % of atmospheric ozone (O3) today resides in the stratosphere, which we know as the ozone layer (extending from ~15-35 km), where it plays a critical role in filtering out most of the harmful ultraviolet (UV) rays from the sun. The gradual formation of the ozone layer from around 600 million years ago was key in Earth’s evolutionary history, as it enabled life to flourish on land. Lesser known is the importance of the remaining ~ 10 % of atmospheric ozone, which is found in the troposphere and has implications for air quality, radiative forcing and the oxidation capacity of the troposphere. Whilst ozone is a pollutant at ground level, contributing to an estimated 6 million premature deaths globally per year, it also acts to cleanse the troposphere by breaking down a large number of pollutants, along with some greenhouse gases. Ozone is however a greenhouse gas in itself – where it has a maximum radiative forcing in the upper troposphere. It is an example of a non-well mixed gas, owing to its spatially and temporally highly varying sources and sinks, as well as its relatively short global mean tropospheric lifetime of about 3 weeks.

Figure 1 – Seasonal composites of monthly averaged 1000-450 hPa (0-5.5 km) subcolumn O3 (DU) for 2005-2010 (left to right) from (a) OMI, (b) EMAC minus OMI and (c) CMAM minus OMI. Circles denote (a) equivalent ozone-sonde derived subcolumn O3 (DU), (b) EMAC minus ozone-sonde differences and (c) CMAM minus ozone-sonde differences. All data were regridded to 2.5° resolution (~ 275 km). 1 Dobson Unit (DU) equates to a thickness of 0.01 mm if it were compressed at sea level.

A major source of tropospheric ozone is the photochemical reactions of emission precursors such as carbon monoxide (CO), nitrogen oxides (NOx) and volatile organic compounds (VOCs), which have both natural and anthropogenic sources, in addition to the natural influx of ozone-rich air from the stratosphere. The magnitude of these two competing influences has been poorly quantified until the recent advent of satellite observations and the development of comprehensive chemistry-climate models (CCMs), which simulate interactive chemistry and are stratospherically well-resolved.

Our study aimed to update and extend the knowledge of a previous key study (Lamarque et al., 1999), that investigated the role of stratosphere-troposphere exchange (STE) on tropospheric ozone, using two contemporary state-of-the-art CCMs (EMAC and CMAM) with stratospheric-tagged ozone tracers as a diagnostic. We first sought to validate the realism of the model ozone estimates with respect to satellite observations from the Ozone Monitoring Instrument (OMI), together with spatially and temporally limited vertical profile information provided from ozonesondes, which we resolved globally on a seasonal basis for the troposphere (1000-450 hPa) (Figure 1).

Whilst we found broad overall agreement with both sets of observations, an overall systematic bias in EMAC of + 2-8 DU (Dobson Units) and regionally and seasonally varying biases in CMAM (± 4 DU) can be seen in the respective difference panels (Figure 1b and 1c). A height-resolved comparison of the models with respect to regionally aggregated ozonesonde observations helped us to understand the origin of these model biases. We showed that apparent closer agreement in CMAM arises due to compensation of a low bias in photochemically produced ozone in the troposphere, resulting from the omission of a group of emission precursors in this model, by excessive smearing of ozone from the lower stratosphere due to an inherent high bias. This smearing is induced when accounting for the satellite observation geometry of OMI, necessary to ensure a direct comparison with vertically well-resolved models, which has limited vertical resolution due to its nadir field of view. The opposite was found to be the case in EMAC, with a high (low) bias in the troposphere (lower stratosphere) relative to ozonesondes. Given the similarity in the emission inventories used in both models, the high bias in this model indicates that excess in situ photochemical production from emission precursors is simulated within the interactive chemistry scheme. These findings emphasise the importance of understanding the origin of such biases, which can help prevent erroneous interpretations of subsequent model-based evaluations.

Noting these model biases, we next exploited the fine scale vertical resolution offered by the CCMs to investigate the regional and seasonal variability of the stratospheric influence. Analysis of the model stratospheric ozone (O3S) tracers revealed large differences in the burden of ozone in the extratropical upper troposphere-lower stratosphere (UTLS) region, with some 50-100 % more ozone in CMAM compared to EMAC. We postulated that CMAM must simulate a stronger lower branch of the Brewer-Dobson Circulation, the meridional stratospheric overturning circulation, since the stratospheric influence is isolated using these simulations. This has implications for the simulated magnitude and distribution of the downward flux of ozone from the stratosphere in each model. Shown in Figure 2 is the zonal-mean monthly evolution of ozone volume mixing ratio (ppbv) from ozonesondes and EMAC over the period 1980-2013 for the upper (350 hPa), middle (500 hPa) and lower (850 hPa) troposphere, together with the EMAC O3S and derived fraction of ozone of stratospheric origin (O3F) (%) evolution.

We found that the ozonesonde evolution closely resembles that of both EMAC and CMAM (not shown) throughout the troposphere. A clear correspondence in the seasonality of ozone is also evident for the EMAC O3S tracer, and in turn the O3F evolution, particularly towards the upper troposphere. Nonetheless, both models imply that over 50 % of near-surface ozone is derived from the stratosphere during wintertime in the extratropics, which is substantially greater than that estimated by Lamarque et al. (1999) (~ 10-20 %), and still considerably higher than more recent studies (~ 30-50 %) (e.g. Banarjee et al., 2016). This indicates that the stratospheric influence may indeed be larger than previously thought and is thus an important consideration when attempting to understand past, present and future trends in tropospheric ozone.

Figure 2 – Zonal-mean monthly mean evolution of ozone (O3) volume mixing ratio (ppbv) derived from (a) ozonesondes and (b) EMAC. The evolution of the (c) EMAC stratospheric ozone (O3S) tracer and (d) stratospheric fraction (O3F) (%) are additionally included over the period 1980-2010 for 350 hPa (top row), 500 hPa (middle row) and 850 hPa (bottom row).

Finally, we analysed height-resolved seasonal changes in both the model O3 and O3S between 1980-89 and 2001-10. The calculated hemispheric springtime (MAM/SON) changes in ozone are shown in Figure 3, and equivalently for O3S in Figure 4, for the upper and middle troposphere (350 and 500 hPa), as well as for the surface model level. A general increase in tropospheric ozone was found worldwide in all seasons, which is maximised overall during spring in both the Northern Hemisphere (~ 4-6 ppbv) and the Southern Hemisphere subtropics (~ 2-6 ppbv), corresponding to a relative increase of about 5-10 %. Respectively, a significant stratospheric contribution to this change of ~ 3-5 ppbv and ~ 1-4 ppbv is estimated using the model O3S tracers (~ 50-80 % of the total change), although with substantial inter-model disagreement over the magnitude and sometimes the sign of the attributable change for any given region or season from the stratosphere.

Figure 3 – Seasonal change in EMAC ozone volume mixing ratio (O3) (ppbv) between 1980-89 and 2001-10 for MAM (top) and SON (bottom) at (a) 350 hPa, (b) 500 hPa and (c) the surface model level. Stippling denotes regions of statistical significance according to a paired two-sided t-test (p < 0.05).

Although surface ozone changes are dominated by regional changes in precursor emissions between the two periods – the largest, statistically significant increases (> 6 ppbv) being over south-east Asia – the changing influence from the stratosphere were estimated to be up to 1–2 ppbv between the two periods in the Northern Hemisphere, albeit with high regional, seasonal and inter-model variability. In relative terms, the stratosphere can be seen to typically explain 25-30 % of the surface change over regions such as the Himalayas, although locally it may represent the dominant driver (> 50 %) where changes in emission precursors are negligible or even declining due to the enforcement of more stringent air quality regulations over regions such as western Europe and eastern North America in recent years.

Figure 4 – Seasonal change in EMAC stratospheric ozone volume mixing ratio (O3S) (ppbv) between 1980-89 and 2001-10 for MAM (top) and SON (bottom) at (a) 350 hPa, (b) 500 hPa and (c) the surface model level. Stippling denotes regions of statistical significance according to a paired two-sided t-test (p < 0.05). Note the scale difference between (a-b) and (c).

To summarise, our paper highlights some of the shortcomings of the EMAC and CMAM CCMs with respect to observations and we emphasise the importance of understanding model bias origins when performing subsequent model-based evaluations. Additionally, our evaluations highlight the necessity of a well-resolved stratosphere in models for quantifying the stratospheric influence on tropospheric ozone. We find evidence that the stratospheric influence may be larger than previously thought, compared with previous model-based studies, which is a highly significant finding for understanding tropospheric ozone trends.

References:
Lamarque, J. F., Hess, P. G. and Tie, X. X.: Three‐dimensional model study of the influence of stratosphere‐troposphere exchange and its distribution on tropospheric chemistry., J. Geophys. Res. Atmos., 104(D21), 26363-26372, https://doi:10.1029/1999JD900762, 1999.

Banerjee, A., Maycock, A. C., Archibald, A. T., Abraham, N. L., Telford, P., Braesicke, P., and Pyle, J. A.: Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100., Atmos. Chem. Phys., 16, 2727-2746, https://doi.org/10.5194/acp-16-2727-2016, 2016.

On relocating to Oklahoma for 3.5 months

Email: s.h.lee@pgr.reading.ac.uk

From May 4th through August 10th 2019, I relocated to Norman, Oklahoma, where I worked in the School of Meteorology in the National Weather Center (NWC) at the University of Oklahoma (OU). I’m co-supervised by Jason Furtado at OU, and part of my SCENARIO-funded project plan involves visiting OU each summer to work with Dr. Furtado’s research group, while using my time in the U.S. to visit relavant academics and conferences. Prior to my PhD, I studied Reading’s MMet Meteorology and Climate with a Year in Oklahoma degree, and spent 9 months at OU as part of that – so it’s a very familiar place! The two departments have a long-standing link, but this is the first time there has been PhD-supervision collaboration.

The National Weather Center in Norman, Oklahoma – home to the School of Meteorology.

The National Weather Center (NWC) [first conceived publicly in a 1999 speech by President Bill Clinton in the aftermath of the Bridge Creek-Moore tornado] opened in 2006 and is a vastly bigger building than Reading Meteorology! Alongside the School of Meteorology (SoM), it houses the Oklahoma Mesonet, the NOAA Storm Prediction Center (SPC) (who are responsible for operational severe weather and fire forecasting in the U.S.) and the NOAA National Severe Storms Laboratory (NSSL). SPC and NSSL will be familiar to any of you who have seen the 1996 film Twister. You could think of it as somewhat like a smaller version of the Reading Meteorology department being housed in the Met Office HQ in Exeter.

Inside the NWC.

The research done at SoM is mostly focussed on mesoscale dynamics, including tornadogenesis, thanks to its location right at the heart of ‘tornado alley’. It’s by no means a typical haunt of someone who researches stratosphere dynamics like I do, but SoM has broadened its focus in recent years with the inception of the Applied Climate Dynamics research group of which I’m a part. Aside from the numerous benefits of being able to speak face-to-face with a supervisor who is otherwise stuck on a TV screen on Skype, I also learnt new skills and new ways of thinking – purely from being at a different institution in a different country. I also used this time to work on the impact of the stratosphere on North America (a paper from this work is currently in review).

I also visited the NOAA Earth System Research Laboratory (ESRL) in Boulder, Colorado to present some of my work, and collaborate on some papers with scientists there. Boulder is an amazing place, and I highly recommend going and hiking up into the mountains if you can (see also this 2018 blog post from Jon Beverley on his visit to Boulder).

As for leisure… I chose to take 2 weeks holiday in late May to, let’s say, do “outdoor atmospheric exploration“. This happened to coincide with the peak of one of the most active tornado seasons in recent years, and I just so happened to see plenty of them. I’m still working on whether or not the stratosphere played a role in the weather patterns responsible for the outbreak!

An EF2-rated wedge tornado on 23 May near Canadian, Texas.