Panto 2022: FORTRANGLED 

Caleb Miller – c.s.miller@pgr.reading.ac.uk

Jen Stout – j.r.stout@pgr.reading.ac.uk

One of the biggest traditions in the Reading meteorology department is the yearly Christmas pantomime. Because of lockdowns and safety measures in the past several years due to the COVID-19 pandemic, 2022 was the first year to return to a live performance since 2019, and it was a lot of fun! 

FORTRANGLED Poster 

The panto this year was directed by Jen Stout and Caleb Miller. We were asked at the end of the summer by last year’s organizers if we would be interested in the roles of director, and we both agreed to it — most likely only because we didn’t realize how big of a task this would be! 

Plot 

The original idea for this plot was Jen’s idea. They suggested that we create a plot based on the story of Rapunzel, particularly on Disney’s adaptation in the movie Tangled. This turned out to be a well-loved story for many of the PhD students in the department, and when we met early in the autumn term to vote on a plot idea, Tangled won unanimously. 

It wasn’t long before we began to adapt the story to our own department and the field of meteorology. The original movie centers around the story of Rapunzel, a princess who was kidnapped at birth because of her hair’s special abilities, as she escapes the remote tower with the help of an outlaw. We quickly recognized the similarity between the original story and our own department’s move from the old Lyle building to the main Brian Hoskins building which was taking place at the time. 

The Lyle building was famously tall (with many, many stairs), and it was isolated from the majority of the department, much like Rapunzel’s tower. We even had someone to rescue the poor Lyle residents: head of department, Joy Singarayer! 

But who would take the spot of the villain, the woman who owned the tower and held Rapunzel there? Why not the Remote Sensing, Clouds, and Precipitation (“Radar”) research group? Jen and Caleb were both members (as were two of our supervisors), so we could make fun of ourselves, and the group had many members who were still in the Lyle building at the time. 

Soon, the story began to develop. Caleb wrote much of the initial draft and dialog, and several of the seasoned panto writers from last year stepped in and peppered the script with jokes and radar-related puns, much improving the final story! 

In the end, FORTRANGLED told the story of a young PhD student, Rapunzel, who wanted to use her invention, the Handheld Advanced Imaging Radar (“HAIR”), for in situ measurements on a weather balloon, but she is stopped by the Radar group. Thankfully, she is rescued from the lonely Lyle tower by Joy Singarayer, and finally she joins her original supervisor King Professor Sir Brian Hoskins and launches the balloon. 

Songs 

Of course, the panto wouldn’t be the same unless it featured popular songs with brand-new lyrics full of meteorology puns! We decided to use several of the songs from the Tangled film, while adding a few others where they fit.  

The band was headed by Flynn Ames. They began rehearsing months in advance, and their practice paid off enormously. The band performed excellent covers of a wide variety of musical genres and songs, featuring acoustic and electric guitars, bass, drums, keys, cello, and even a trombone! By the time we came to rehearse with the singers, they sounded incredible.  

As for the lyrics to the songs, Jen took charge with most of the writing — once it was realized that “Sheet Nimbostratus” sounded vaguely like “Pina Coladas,” the favourite “Sheet Nimbostratus (Escape)” song (a parody of Rupert Holmes’ Pina Colada Song) was written in under half an hour on a lunch break and ended up working well with theme of escape for the first act. 

Flynn was also a massive help with the songs, especially the last song of the show: Hall & Oates’ – “You Make My Dreams”. When it came to rehearsing the songs with the cast as singers, it was excellent having Flynn as someone who wasn’t rhythmically challenged to help us sort out when to sing the lyrics (as well as what words to sing and what notes to sing them to!), so thank you to Flynn, Beth, and the rest of the band for helping the rest of us sing as best as we could! 

Casting the lead 

Once the script was written, it was time to select the cast. Most of the casting was reasonably quick, but we had one issue: no one wanted to play the lead! Convincing a PhD student to pretend to be a princess in front of the entire department is understandably difficult. We spent at least a week going around the department trying to convince one another to step up for the role.  

However, the role had far too many lines for any one person to commit to, and therefore we settled on the “Rapunzel Roulette,” where a different person would play Rapunzel in each of the scenes. This ended up being a really good move, and meant that instead of the role being high-pressure, it was a rush of excitement and silliness for each act, especially as they had to pass the wig onto the next person before the next act started. 

The Night of the Panto 

The panto turned out to be a lot of fun! We sold over 130 tickets, and this was certainly one of the larger post-lockdown events at the department. Planning for the in-person event required no small amount of admin work, and we were especially helped by Dana Allen, Joy Singarayer, and Andrew Charlton-Perez! 

The event started at 6:30 with a bring-and-share buffet, and doors opened to Madejski Lecture Theatre at 7:30 before the show start. 

The FORTRANGLED cast 

We also had several interval acts, including the latest episode from John Shonk’s famous Mr. Mets series, Blair McGinness’s presentation on the controversial results of a department biscuit ranking tournament, and a musical performance from the faculty! 

After the interval acts, we resumed with the second act of the panto, and finished the result of months’ writing and rehearsals. The inclusion of the “Top Secret” notes and distribution of balloons was a last-minute inclusion, organized by Jen, intended to surprise the rest of the cast except for our excellent Narrator, Natalie, who was told beforehand in case everything went wrong!  

The instructions to the audience were as follows: “In the wilderness: If you see a duck; shout: quack! If you see a goose, shout: honk!,” as well as the extremely vague: “If the stage needs a balloon: please blow up your balloon and throw it towards stage!” 

Surprisingly, especially for a pantomime, the audience was incredibly well-behaved, balloons arrived exactly on cue (despite this not being written into the script whatsoever). As for the command to shout “honk” and “quack” when geese and ducks appeared… the honks went on for much longer than we expected, causing a lot of chaos and confusion both on and off stage! This was undoubtedly Jen’s favourite part of the entire show. 

After the party, we celebrated with an afterparty in the department coffee area led by DJ Shonk. This included some thematically appropriate piña coladas, which may have led to the scattering of the geese and ducks throughout the department… 

Reflections 

As the panto was the first in-person panto since 2019’s The Sonde of Music, and so most of the cast hadn’t seen a live pantomime in the way we did it this year! This made it a massive challenge to organise, and directing the Panto turned out to be a very difficult, but also very rewarding, task. Seeing everyone’s hard work come together on the night was the best part, and we’re glad we contributed to such a long-standing department tradition. 

We’d like to thank everyone who was involved: anyone we convinced to act, sing, play in the band, make props, put on silly outfits, organise the event, perform an interval act, or throw balloons at the stage. We found that this department is full of some very talented people, and it was really fun getting to work in some areas we don’t often get to see. If meteorology research is one day taken over by AI, the members in our department would have no problem finding new jobs on Broadway! 

AGU 2022 in the Windy City

Lauren James – l.a.james@pgr.reading.ac.uk

AGU Fall Meeting 2022 was held in Chicago, Illinois from 12th – 16th December, and I was fortunate to attend the conference in person to present a poster on my PhD research. At the post-pandemic event, 18,000 attendees were expected to be present throughout the week and more attended online. To date, this was going to be the largest audience to view my research.

No matter how many people tell you how huge the AGU meeting is, it is not until you walk into the venue you understand the extent of this conference. Rows upon rows of poster boards, a sizeable exhibition hall, an AGU centre and relaxation zone, and endless hallways to the seminar rooms. I went by the venue on Sunday afternoon to register and work out the main routes to and around the conference centre. I would recommend this to anyone attending as come Monday morning the registration queue was extraordinarily long, looping across bridges and down staircases. You would have missed any early morning talks you wanted to attend.

Tuesday morning was my allocated time to showcase my work. The poster sessions were 3.5 hours long, but the posters could be kept up on the board for the full day. Whilst there was no requirement to stand next to your poster for the full duration, I did just that as time flew by very quickly. Fellow scientists were eager to discuss the work, learn about new ideas, and find overlaps with their work. I brought along A4 printed versions of the poster (an idea I had picked up from another conference) and it was beneficial to either let attendees take away your work for reference or for allowing people at the back of a crowd to read the poster. For the online attendees, presenters could make an interactive poster (a.k.a iPosters) which was published on the online gallery. This platform allowed videos, gifs, and audio clips as well as no-limit to text in expandable text boxes. Whilst still being mindful of not overcrowding a poster, these additional features made the poster more accessible. For some fortunate presenters, digital poster rows at the conference allowed their iPosters to be viewable in person too. Thus, presenters could use the movies and audio to support their work as well as attendees could easily interact with their displays whilst unmanned. Further, there was no organisation for printing and travelling with a poster and produced no waste. Could this be the future of poster sessions?

Figure 1: An overlooking view of a section of the poster hall on the final day of the conference. The digital poster row can be seen on the closest row.
Figure 2: A picture of myself in front of my poster.

There were so many oral presentations throughout the week that are suitable for your field of research. With the help of the AGU app, I was able to make a schedule for the space physics sessions I wanted to attend and optimise my time at the conference by finding other sessions I would find interesting. This year, for the first time, there was a session on ‘Raising Awareness on Mental Health in the Earth and Space Sciences’. In the last few years, such sessions have become more widely available and I am happy to see that AGU has also taken the opportunity to discuss the importance of healthy work. Of the oral presentation sessions I attended, this one instigated a very engaged audience and highlighted the importance of interdisciplinary discussions. All the oral presentation sessions catered for in-person and online audiences, and have continued to allow online speakers to present and participate in the Q&A. These sessions are also still available to re-watch for all the attendees for a few weeks.

A walk amongst the exhibition hall filled some of the free time between sessions and allowed attendees to discuss careers with academic institutes and businesses working with instrumentation, programming, data accessibility, fieldwork and more. As a postgraduate student in space physics, it was initially overwhelming to see many stands that were advertising topics alien to me. But before you knew it, I had heard about a new state-of-the-art instrument that will rapidly transmit terabytes of data; learnt about ground aquifers by making an Oreo Ice Cream float; and collected a renowned NASA 2023 calendar.

From my understanding, there have been a few changes to the AGU meeting since pre-pandemic times. The colours of your lanyard corresponded to your comfort level of COVID-19 safety, spanning from ‘I need distance’ to ‘Air high fives approved’. Alcoholic refreshments during poster sessions were not provided as a conscious decision to improve attendee well-being and ensure the code of conduct is upheld. And the host city of the meeting will change annually within the US to improve the accessibility of the conference (although for a UK attendee, a long-haul flight is unavoidable regardless of this).

Figure 3: A few memories from my visit to Chicago, including the Oreo ice cream float, the cloud gate (a.k.a., The Bean), and the NHL Ice Hockey game at the Union Center.

Chicago was a lovely city to host this year. The conference centre was easily accessible by train and bus from the downtown area, and even walkable on a good weather day. We were fortunate to have rather pleasant weather throughout the visit, although some rain, snow, and a bitterly cold wind were experienced. Exploring the city was extra special this close to Christmas and aided the glory of city lights after sunset. In the evenings, there was ample time and things to do with early career scientists I’ve met throughout my time as a PhD student and newly made contacts from the US. Watching an NHL ice hockey match, visiting Navy Pier, a competitive evening at the bowling alley, and trying the famous deep dish pizza were just some of the things squeezed into the busy week.

There is no doubt that attending the AGU Fall Meeting has been a highlight in my PhD experience, and one that I would recommend to anyone who has the opportunity to visit in the future. Even if you’re travelling alone, which I did, there were ample opportunities to meet fellow attendees and experience a very enjoyable week in the city. I thank the University of Reading Graduate School for giving me a student travel bursary to help fund this international trip. Next year, this conference is being held in San Francisco, California from the 11th – 15th of December 2023.

COP27 – An oasis in the heat of the climate change emergency, or a deserting of hope?

Rosie Mammatt – r.m.mammatt@pgr.reading.ac.uk

Thea Stevens – thea.stevens@pgr.reading.ac.uk

Sitting in the COPCAS studio in the University of Reading we were able to watch the numerous talks and panels taking place each day. This allowed us to tune into the different discussions surrounding topics from the role of civil society to the importance of biodiversity, giving us a unique insight into the proceedings of the conference. Through our team of people attending the conference, we were able to interview those who were participating in the negotiations, such as Robert Muthami, a climate and social justice advocate from Kenya. This gave us a gauge of what the atmosphere was like within the discussion and negotiation rooms. This left us with mixed emotions nearly 4000 miles away in Reading…

Left: Thea with her team in the Climate Action Studio on Energy and Civil Society Day. Right: Rosie with her team in the Climate Action Studio on the opening day of COP27.

“Human actions are the cause of this problem, so human actions must be the solution”. These were the words spoken passionately by UN Secretary-General António Guterres during the World Leaders Summit on the opening day at COP27. Similarly rousing speeches followed from world leaders and delegates who highlighted the challenges their countries are facing due to the climate emergency. The tone was set as one of desperation.

A large focus this year was on loss and damage. Talking to some of the negotiators towards the middle of COP showed us the struggle which was occurring behind the scenes. However, this ended up as one of the more positive outcomes of COP27 as an agreement on the creation of a global “loss and damage” fund. This is a historic milestone, and something that the most vulnerable nations have been seeking for decades. This is great progress. However, it is the beginning of a long process which is going to have to unpick who puts money into the fund and who is eligible to get money out. So, there is progress, but it is predictably slow meaning the hopes of the most vulnerable nations should not be pinned on this shaky agreement.

There have also been some critical backwards steps from Glasgow, with a number of important statements being removed from the final text. Alok Sharma put it clearly in his closing remarks:

‘Emissions peaking before 2025, as the science tells us is necessary.

Not in this text.

Clear follow-through on the phase down of coal.

Not in this text.

A clear commitment to phase out all fossil fuels.

Not in this text.

And the energy text, weakened, in the final minutes.’

This shows a clear and frustrating reduction in ambition that was fought over in the last COP.

Boosting low emission energy was also agreed upon in the final text. Unfortunately, there is some ambiguity around what “low emission energy” refers too. One would hope that this means renewable energy sources such as wind, solar, hydroelectric, tidal or wave power, or even nuclear power. However, it could also mean coal power stations with carbon capture capabilities or gas power. The “dash for gas” is something that should not be encouraged, as it must not be forgotten that gas is still a fossil fuel. Many gas-rich countries, however, sent officials to COP27 hoping to strike lucrative gas deals. Ultimately, this is not a viable solution for these nations and certainly not the right solution for the climate.

The whole event was overshadowed by an issue surrounding the lack of freedom to speak or peacefully protest. People on the ground in Sharm El-Sheikh said that this ominous feeling permeated the event as a whole. News after the arrest of hundreds of peaceful protesters and the misconduct by the Egyptian police showed the extent of the human rights crisis. Protesters will hope for fairer treatment next year, but due to its location are likely to be left disappointed.

COPCAS has allowed us to understand the mechanisms behind the negotiations and has shown how long and hard they are to achieve. However, the lasting feelings of COP27 are mixed. Progress has been made but it is slow and some key victories from previous COPs have been watered down. It feels like this might be the end of the 1.5oC dream. These talks are critical for our future and we should be seeing ambition, and more importantly, action at this time.

See all the bogs written during COPCAS:

https://walker.ac.uk/about-walker/news-events/

European Space Weather Week and exploring Zagreb

Harriet Turner – h.turner3@pgr.reading.ac.uk

This trip contained several firsts for me – first flight, first international conference and first in-person conference presentation. The 18th annual European Space Weather Week was held in Zagreb, Croatia from 24th to 28th October 2022, with delegates from Europe, the US and Australia present. The week was full of interesting talks and lively socials, culminating with the Reading lot (plus a postdoc from Imperial) completing the “secret social” lunar themed escape room in the second fastest time of the week.

It always feels more official when your name is on a lanyard!

The week started with the standard conference registration followed by some tutorials and a live space weather forecast. Space weather refers to the changing plasma conditions in near-Earth space, which can pose a threat to modern life. It can lead to communication failures, damage to satellites, blackouts, and harm the health of humans in space. For this reason, it is important to forecast space weather so that these impacts can be mitigated against. The afternoon of the first day consisted of two parallel sessions and a poster session, with a reception buffet in the evening. The parallel sessions ran throughout the week, covering a wide range of topics from ways to improve our space weather forecasting capabilities to measuring and modelling geoelectric fields.

Tuesday was filled with more parallel sessions containing a wide range of talks, including my first in-person conference presentation of my PhD. I was rather nervous to present my work in front of a (quite large) room full of experts in the field, however I think it was well received and I had some interesting questions.

I study the solar wind, which is a constant stream of charged particles that flows off the Sun and is an important component of space weather. I have been using data assimilation (DA) to forecast the solar wind, which combines model output and observations to form an optimum estimation of reality. For DA to work in an operational context, it needs to work with real time data. This often contains more data gaps and erroneous observations when compared with the cleaned-up science level data, which has been used for previous analysis of solar wind DA. To cut a long story short, my work has shown that the real time data does not significantly worsen the forecasts, meaning that DA could be used for operational solar wind forecasting. Which is what we wanted to hear! I celebrated the presentation being over with a big pizza, followed by the conference music night hosted in a local bar. Turns out there are some talented musicians in the space weather community!

On the stage presenting the slide on the data assimilation scheme I have been analysing.

The rest of the week went by in a blur of parallel and poster sessions, with the conference dinner on the Thursday evening and everything wrapping up on Friday lunchtime. With flights back to the UK not until Monday evening, we had plenty of time to explore what Zagreb had to offer. Saturday was spent exploring the Mushroom Museum (spoiler alert, it was full of mushrooms) and the Museum of Broken Relationships. The latter of the two was filled with donated items that were special in some way or another and symbolised the end of a meaningful relationship. There were certainly some quirky exhibits, but a good attraction for sure.

There was not mushroom for anything else… (I’ll show myself out).

We filled Sunday with a tram ride to the north of Zagreb to the Sljeme cable car. The cable car took us from 267m up to the mountain summit at 1030m, which, for context, is 55m lower than Snowdon. One thing that will remain with me is just how foggy it was in Zagreb, so rising out of the fog in the cable car provided some great views. We could see the cloud hanging low in the valley and it was glorious sunshine at the top. The mountains were covered in trees that were turning into their autumn colours, which certainly was a beautiful sight.

With most of Monday to spare, we explored another museum. This time it was the Museum of Illusions, which was a lot of fun. There were a lot of interactive exhibits, including ones where you can make a kaleidoscope of your own face and play poker with 7 versions of yourself. It led to some truly horrifying photos.

View from the cable car over the mountains.

Overall, it was a tiring yet productive and enjoyable trip. I enjoyed networking with many scientists in my field, many of whom I had only seen as a name on a paper or on Twitter. It was great to see how work in the field is advancing and I look forward to being a part of that in the future.

Finally, a tip if you are visiting Croatia, try Čoksa salted peanut chocolate, it’s great. The forest fruits flavour is also great, but the banana has received mixed reviews!

Cape Verde with a Chance of Dust Storms

Natalie Ratcliffe – n.ratcliffe@pgr.reading.ac.uk

My PhD project was could have been done entirely from behind a computer screen, but I ended up in Cape Verde for 3 weeks in June 2022 on a field campaign.

Though the island of Sao Vicente is one of the Cape Verde (= green cape) islands, it wasn’t particularly green…

Working with Dr Franco Marenco from The Cyprus Institute (CyI) and my supervisor at Reading, Dr Claire Ryder, I managed to get some funding to spend 3 weeks in Cape Verde alongside an organised campaign. The ASKOS campaign was created to calibrate and validate aerosol, wind and cloud products from the Aeolus satellite, launched in 2018. They planned on using a combination of ground-based instruments and drones supplied by the Unmanned Systems Research Laboratory (USRL) with CyI to profile dust above Cape Verde to compare with the Aeolus aerosol products.

My PhD project is based around trying to understand how some large dust particles (diameter > 20 um) are travelling much further from the Sahara than expected based on their deposition velocity. One theory about how these particles are transported so far is that they are vertically mixed throughout the depth of the Saharan Air Layer (SAL, dry dusty air layer transported from the Sahara, typically up to ~6 km altitude) during convective mixing in the daytime. At night, with the removal of this convection, these large particles begin to settle through the SAL at a faster rate than other fine particles, before being mixed up again to the top of the SAL during the convective day. This is hypothesised to increase the time taken for the particles to reach the surface, encouraging long-range transport of these coarse particles. We proposed to fly drones with optical particle counters attached up through the SAL during the day and night to see if this theory has any standing.

Before I could go to Cape Verde came all the admin and preamble for going on a field campaign. Before booking flights and accommodation, the wonderfully long health and safety risk assessment form must be completed and approved. Reading through that form really makes it feel like you’re going to face every single threat known to humankind while you’re off campus; hurricanes, volcanoes, Covid-19, getting bitten by ticks (other animals/insects are available), sunburn (to be fair, a very real concern for me) and even getting hacked and bribed. I suppose being prepared for all these eventualities is meant to make it less scary

I had three virtual meetings with everyone involved in the campaign before we travelled, so I had a little bit of an idea what I was supposed to be doing when we were out there. Though to be honest, I still wasn’t entirely sure until a couple of weeks before we left! Claire and I had to introduce our work and what we wanted to achieve from this campaign. I was a little apprehensive as we were going to be requesting to collect data in the very early morning (3-6am ish) meaning we’d have to ask some of the other scientists to be up very early (or late depending on your opinion).

The Wall-e LiDAR. Wall-e was looking at the orientation of the dust particles. eVe was there too but she was basically just an all-white version of Wall-e (disappointing).

Now we get to the fun part where I actually go on the campaign (or on holiday as some people kept insisting. FYI, this was absolutely not the case). Most days would start with a few of us looking at the forecast to work out when we should aim to fly the drones. We would decide on a plan for the day, a suggested plan for the next day, briefly looking at data from the day before and then collating this all into a newsletter which was sent out to everyone on the campaign. These forecasts were useful for those collecting in-situ observations as well as those working on the ground-based remote sensing equipment. It also became very clear in these meetings that each scientist had a preferred forecasting model. We had so many options for forecasts (SKIRON, Met Office, CAMS, IAASARS, ECMWF etc), as well as varying satellite retrievals (EUMETSAT Dust RGB, MODIS NASA AOD, NOAA GOES-East visible images etc) and near-real-time observations from the ground instruments (PollyXT LIDAR, HALO Doppler wind lidar, CIMEL Sunphotometer etc) that there was occasionally some jostling to work out which forecast and measurements to trust and focus our planning based on! I was then able to go to the airport to help the flight team. I would refer to the most recent reading from the lidar and suggest which layers in the dust should be sampled with filters, as well as checking the wind lidar to make sure it wasn’t getting windier.

The USRL team getting ready for launch. The drones were thrown rather than taking off from the ground. The pilot is in the middle; he has a controller and a headset which he can use to pilot the drone.
The drone path, windspeed, ground speed and altitude can be watched from the ground.

Looking back, we should have focused our forecasting on the wind and cloud more than the dust concentration. Initially, we were planning to measure when there was an interesting or high concentration dust event over the island. However, we eventually realised that the wind and cloud cover were the most limiting factors for measuring in terms of the in-situ and ground-based measurements, respectively. This unfortunately meant that, on a few occasions, the flight team were stuck at the airport waiting for the winds to drop before they could launch the drones. Or that the remote sensing teams couldn’t take results at the same time as the drones because there was too much cloud. It was a learning experience for everyone involved!

I’ve taken away four things from this campaign that it seems will probably happen on any field campaign, so take note if you ever get the opportunity!

  • You’ll get to meet some really cool people
  • Probably get food poisoning
  • Your equipment will break at some point
  • And many things will go wrong… It’s an inevitability

Some of the issues we faced were: instruments taking longer to calibrate and setup than expected, helium arriving two weeks late, missing weather balloons, two got covid, five got food poisoning, one drone crash-landed, too windy to fly the drones, not dusty enough, too cloudy for the lidars… It was definitely an exercise in contingency planning. I did say that this was a fun experience and I do mean it! Though there were many tense moments where things went completely opposite to the plan, I got to meet a lot of cool scientists, learn about new instruments, go to Africa for the first time and get hands on with some dust at last!

Feel free to check out this blog post which I wrote for ESA’s Campaign Earth blog page: (https://blogs.esa.int/campaignearth/2022/08/03/delving-deep-into-dusty-skies-on-the-askos-aeolus-field-campaign/).

This blog article is part of the DAZSAL project that is supported by the European Commission under the Horizon 2020 – Research and Innovation Framework Programme, H2020-INFRAIA-2020-1, Grant Agreement number: 101008004, Transnational Access by ATMO-ACCESS.

Arctic Summer-time Cyclones Field Campaign in Svalbard

Hannah Croad – h.croad@pgr.reading.ac.uk

The rapid decline of sea ice is permitting increased human activity in the summer-time Arctic, where it will be exposed to the risks of Arctic weather. Arctic cyclones are the major weather hazard in the summer-time Arctic, producing strong winds and ocean waves that impact sea ice over large areas. My PhD project is about understanding the dynamics of Arctic summer-time cyclones. One of the biggest uncertainties in our understanding is the interaction of cyclones with the surface and sea ice. Sea ice-atmosphere coupling is greatest in summer when the ice is thinner and more mobile. Strong winds associated with cyclones can move and alter the sea ice, but the sea ice state also feeds back on the development of cyclones, determining surface drag and turbulent fluxes of heat and moisture


My PhD project is closely linked with the Arctic Summer-time Cyclones NERC project, and therefore, I had the opportunity to join the associated field campaign. The field campaign team is comprised of scientists, engineers and pilots from the University of Reading, the University of East Anglia and British Antarctic Survey (BAS). The primary aim of the field campaign was to fly through Arctic cyclones, (i) mapping cyclone structure and (ii) obtaining measurements necessary to characterise the cyclone-sea interaction. In particular, observations of near-surface fluxes of momentum, heat and moisture over sea ice and ocean are needed, as these fluxes dictate the impact of the surface on cyclones. These observations are needed to evaluate and improve the representation of turbulent exchange in numerical weather prediction (NWP) models, especially over sea ice where there are not many existing observations. To obtain accurate measurements of near-surface fluxes, we need to be quite close to the surface (no higher than 300 ft). To do this, we would be using BAS’s Twin Otter aircraft, equipped with Meteorological Airborne Science INstrumentation (MASIN). The twin-engine prop aircraft is small and light, and is therefore ideal for flying at low-levels just above the surface (as low as 50 ft!). There are many instruments fitted on the MASIN research aircraft, but the most important measurements for our purposes were temperature, wind speed, humidity (important for mapping cyclone structure), surface layer turbulent fluxes (from the 50 Hz turbulence probe), and ice surface properties (from laser altimeter).

British Antarctic Survey’s Twin Otter aircraft, fitted with the MASIN equipment. You can see the turbulence probe on the boom at the front of the aircraft, and the CAPS (cloud, aerosol, and precipitation spectrometer) probe on the left wing. The pilot is on top of the aircraft, carrying out final checks before a science flight. Photo from John Methven.

After a 1-year delay due to the Covid-19 pandemic, the field campaign took place in July and August 2022. We were based on the Norwegian archipelago of Svalbard, a 3-hour flight north of Oslo. The team was based in Longyearbyen, the main town on Svalbard. At 78°N, Svalbard is the most northern town in the world! Longyearbyen is located within a valley on the shore of Adventfjorden. The town is a strange but charming place with lots of eccentricities. Longyearbyen is populated with wooden buildings, with pipes above the ground (as the ground freezes in winter), and old mining structures on the sides of the valley. The town is small, but well provided for, with a few tourist shops, restaurants, and a supermarket. As Svalbard is in the Arctic circle, during the summer months it experiences 24-hour sunlight, which was very strange! Furthermore, Longyearbyen is one of the only places on Svalbard that is ‘polar bear safe’ – you should only leave the town limits if you have a rifle!


The field campaign team worked at Longyearbyen airport. The team would study the forecasts from different weather models for the next week, to decide on flight plans. We were primarily looking for strong winds (ideally associated with cyclones, but beggars can’t be choosers!) over the sea ice, within range of the Twin Otter aircraft (approximately 600 nautical miles). With flight planning, there were many things to consider. It was a case of waiting for good weather to come to us, and planning rest days for the pilots when the weather wasn’t looking so interesting in the forecast. Flight plans would consist of transit to and from the target region, where science would be conducted. Science flying included low-level legs to obtain turbulent flux measurements, vertical profiles of the boundary layer, and stacked cross-sections through cyclone features (e.g. fronts) in and above the boundary layer. For flights where low-level flying was planned, it was key that there should not be low cloud in the target area, as this would prevent the aircraft from flying below 1000 ft for safety reasons. It was also important that there were no bad conditions (poor visibility or strong winds) in Longyearbyen, which would prevent the aircraft from taking off or landing. Longyearbyen is an isolated airfield, and the aircraft cannot carry enough fuel to make it back to the mainland if conditions are too poor to land, so this was a very important consideration. Furthermore, the American and French THINICE project field campaign was being conducted at the same time in Svalbard, with the SAFIRE ATR42 aircraft flying at higher levels, looking downwards on Arctic cyclones. We were able to co-ordinate several flights through the same weather systems, with the Twin Otter aircraft flying below the ATR42.


The Twin Otter aircraft holds 3-4 people, including the pilot. With an instrument engineer also on board, this left space for 1 or 2 scientists on each flight (Note: to fly on the aircraft we had to do helicopter underwater escape training – see my previous blog at https://socialmetwork.blog/2021/07/16/helicopter-underwater-escape-training-for-arctic-field-campaign/). The cabin is very small (too small for a person to stand up), and is rather cramped, with a considerable amount of space taken up by the extra range fuel tank! The aircraft is flown between 50 and 10,000 ft, and so the cabin is not pressurized. For low-level flying, the crew must wear immersion suits and life jackets on the aircraft (in the unlikely event that the aircraft must ditch in the ocean). On the flight the crew wear noise-cancelling headphones (as the engines are rather loud), and everyone can speak to each other over the intercom. During the flight the scientists will alter the flight plan if necessary, depending on the conditions they encounter, and take notes of the environment and any notable events that occur during the flight. This includes noting what they can see out of the window (e.g. sea ice fraction, cloud), any interesting observations from the live feed of the instrument output within the aircraft (e.g. boundary layer depth), and any instruments that are not working or faulty.


I had the opportunity to fly on the aircraft on the third science flight of the field campaign (I wrote about this in another blog: https://research.reading.ac.uk/arctic-summertime-cyclones/first-field-campaign-flying-experience/). We were targeting a region to the north-west of Svalbard, in the Fram Strait, where there was forecast to be strong northerly winds over the marginal ice zone. The primary objective was to measure turbulent fluxes over sea ice at low-level. However, on reaching the target region, we were unable to descend lower than 500 ft due to cloud and Arctic sea smoke (formed as cold Arctic air moves over warmer water in between the sea ice floes) at the surface – not safe conditions for flying at low-level! Through gaps in the clouds, we got a glimpse at the Arctic sea smoke over the marginal ice zone (see below). (Note: Several other flights in the field campaign encountered better conditions and were able to get to low levels – see video below!). We searched for better conditions near the target region for an hour, but didn’t find any, so made the return trip home. It was a shame that we could not fly low enough to obtain turbulent flux measurements, but the flight was still useful for obtaining profiles of wind structure in the boundary layer, and for our understanding of forecast performance in the region.

Photos taken from the Twin Otter aircraft 500 ft above the surface, with a layer of Arctic sea smoke overlaying the ice floes of the marginal ice zone. Here visibility is too low to descend any further. Photos from Hannah Croad.
Flying over the marginal ice zone at 70 ft in good visibility conditions, with the shadow of the Twin Otter aircraft visible. Video from John Methven.

During the month-long field campaign a total of 17 science flights were conducted, flying in all directions from Longyearbyen, with an accumulated 80 hours of flying time. This included 4 Arctic cyclone cases, and 7.5 hours of surface layer turbulent flux measurements (more than we could have hoped for!). The data from the aircraft is currently undergoing quality control. Analysis will now proceed in two streams:

  1. Run simulations of Arctic cyclone cases in NWP models, evaluating against field campaign observations and using various tools to relate surface friction and heating to cyclone evolution (led by the University of Reading team)
  2. Use observations of turbulent fluxes in the surface layer over the marginal ice zone and sea ice properties to improve the representation of turbulent exchange over sea ice – i.e. develop parametrizations (led by the University of East Anglia team)

Building on the outputs and findings from these two work packages, we will then run sensitivity experiments of Arctic cyclones in NWP models, using the revised turbulent exchange parametrizations, to understand the impact on cyclone development.

A summary of all the science flights conducted during the Arctic Summer-time Cyclones field campaign. Flight routes are coloured blue-yellow, indicating flight altitude. Also plotted is the campaign mean sea ice fraction (AMSR2).

I really enjoyed my time on the field campaign, and I learnt a lot! It was great to help the team with forecasting and flight planning, and to be on a science flight. I also got to do a bit of media work, talking on BBC Radio 4’s Inside Science programme (https://www.bbc.co.uk/programmes/m0019z2y). It was a fantastic experience, and now the team and I are looking forward to getting started with the analysis and using the data!

Arctic Summer-time Cyclones field campaign team (some missing) in front of the Twin Otter aircraft. Photo from Dan Beeden.

Urban observations in Berlin

Martina Frid – m.a.h.frid@pgr.reading.ac.uk

Beth Saunders – bethany.saunders@pgr.reading.ac.uk

Introduction 

With a large (and growing) proportion of the global population living in cities, research undertaken in urban areas is important; especially in hazardous situations (heatwaves, flooding, etc), which become more severe and frequent due to climate change.  

This post gives an overview of recent work done for The urbisphere; a Synergy Project funded by the European Research Council (urbisphere 2021), aiming to forecast feedbacks between weather, climate and cities.  

Berlin Field Campaign 

The project has included a year-long field campaign (Autumn 2021 – Autumn 2022) undertaken in Berlin (Fig. 1). A smart Urban Observation System was used to take measurements across the city. Sensors used include ceilometers, Doppler wind LIDARs, radiometers, thermal cameras, and large aperture scintillometers (LAS). These measurements were taken to provide new information about the impact of Berlin (and other cities) on the urban boundary layer. The unique observation network was able to provide dense, multi-scale measurements, which will be used to evaluate and inform weather and climate models.  

Figure 1: Locations of the urbisphere senors in Berlin, Germany (urbisphere 2021).

Large Aperture Scintillometry in Berlin

The Berlin field campaign has included 6 LAS paths (Fig. 1). LAS paths consist of a transmitter and receiver mounted in the free atmosphere (Fig. 2), 0.5 – 5 km apart (e.g. Ward et al. 2014).

A beam of near-infrared radiation (wavelength of ~ 850 nm) is passed from the transmitter to receiver, where the beam intensity is measured. Changes in the refractive index of air are used to derive turbulent sensible heat flux. As the received intensity is the result of fluctuations all along the beam, derived quantities are spatially-integrated, and are therefore at a larger-scale compared to other flux measurement techniques (e.g. eddy-covariance).

Figure 2: One of six large aperture scintillometer path (orange) transects. Ground height (blue) is shown between the receiver site (GROP) and transmitter site (OSWE) in Berlin. The Path’s effective beam height is 50 m above ground level.

Our Visit to Berlin

During the first week of August, we travelled to Berlin for three days of fieldwork, to prepare for an intense observation period (IOP). This trip included us installing sensors, and testing they worked as expected. We visited three observation sites: GROP (123 m above sea level, Fig. 2), OSWE (63 m, Fig. 2) and NEUK (60 m).

One of the main purposes of this visit was to align two of the LAS paths (including the one in Fig. 2). Initially, work is undertaken at the transmitter site (Fig. 3, top) to point the instrument in the approximate direction of the receiver using a sight (Fig. 3, right hand side photographs).

At the receiver site (Fig. 3, bottom), the instrument’s measurement of signal strength can be displayed on a monitor in real time. Using this output as a guide, small adjustments to the receiver’s alignment are made by loosening or tightening two bolts on the mount; one which adjusts the receiver’s pitch, and one with adjusts the yaw. This was carried out until we reached a peak reading in signal strength, indicating the path was aligned.

Figure 3: Photographs of the large aperture scintillometer transmitter at site OSWE (top) and receiver at site GROP (bottom).

Our contribution to the IOP

Back in Reading, daily weather forecasts were carried out for the IOP, to determine when ground-based observations could be made. As the field campaign coincided with the central European heat wave, some of the highest temperatures were recorded during the IOP, and there was a need to forecast thunderstorm and the possibility of lightning strikes.

Ideal conditions for observations were clear skies and a consistent wind direction with height. A variety of different wind directions during the IOP was also preferable, to capture different transects of Berlin. For the selected days, group members in Berlin deployed multiple weather balloons simultaneously across multiple sites within the city and the outskirts. This was also timed with satellite overpasses. Observations of the mixing layer height (urban and suburban) were taken using a ceilometer mounted in a van, which drove along different transects of Berlin.

As the field campaign is wrapping up in Berlin, several instruments are now being moved to the new focus city: Paris. We are looking forward to this new period of interesting observations! Thank you and goodbye from us at the top of the GROP observation site!

References

urbisphere, 2021: Project Context and Objectives. http://urbisphere.eu/ (accessed 27/09/22)

Ward, H. C., J. G. Evans, and C. S. B. Grimmond, 2014: Multi-Scale Sensible Heat Fluxes in the Suburban Environment from Large-Aperture Scintillometry and Eddy Covariance. Boundary-Layer Meteorol., 152, 65–89.

Science Stand-up: Putting those Met Panto Skills to Good Use 

Max Coleman – m.r.coleman@pgr.reading.ac.uk  

A stage and red curtain

I’ve been keen to ‘do my bit’ for climate science communication for a while now. While I do like attending a good public lecture or seminar, I wanted to try something a bit different, particularly something I could bring my love of comedy into. So, when a science stand-up comedy event was pointed out to me (thanks to Tara Bryer of Climate Outreach!) I thought I’d give it a go. 

The event in question is ‘Science Showoff’, an event designed to communicate science via comedy. It’s held on the last Wednesday every month in London, currently held at The Harrison near Kings Cross station, and has been running for over 10 years. And it’s open to absolutely anyone to perform – no comedic credentials required. The only rules are it’s 9-minute sets, must be about something STEM related, and should (hopefully) be funny!  

I performed in the August event and decided to base my set broadly on my research field of modelling the effects of aerosols on climate. Basing the set on my research made it slightly easier as I knew the science content already and just needed to write the comedy – though one can definitely go for more adventurous topics. While to a non-scientist that might sound a bit dry, it’s actually not too difficult to come up with jokes about climate science – as anyone who’s helped write a Met Panto script will surely know.  

For example, framing it as an explanation of my hatred of something as innocuous as deodorant (which as it turns out, makes a decent low-effort physical demonstration of aerosols) seemed a good way to make content easier to understand and line up some more relatable jokes. Having a physical prop, even as simple as a deodorant can, also turned out to be an easy way to ‘wow’ the audience (they set a very low bar indeed for being impressed by my ‘live science’). There’s also a wealth of jokes from being a climate ‘modeller’ – you’ve just got to work it 😉 

On the day, while I was very nervous before the event and into the first minute or two of my set, after that it was great fun. The audience, of about 30 people, were incredibly friendly and the host, Steve, was very supportive. After all, while you’re there for comedy, there’s not much pressure as many of the acts (myself included) have never performed stand-up comedy before. The set mostly went to plan, though I did add a little improvisation in response to audience reactions when they liked a joke more than I’d expected, and when audience members were reluctant to participate – who’d have thought leading one of them into a joke at their expense would make the others so reluctant? It was also a lot of fun going from being an audience member worried about being picked on, to the one who gets to pick on people – the audience engagement was definitely the most enjoyable part.  

It was also huge fun just writing the set. I didn’t set myself loads of pressure, just occasionally thinking of jokes while walking or on the train and making a note of it, and then put it all together the weekend before and rehearsed the evening before. Again, if you’re ever helped write the Panto script or Sappo email, you’ll know how much fun this all can be (although I’m now regretting not getting pizza in while I wrote it).  

And as a bonus, I got to listen to the other five acts perform, sometimes riffing off my jokes too! We had everything from penguins in the Antarctic to the most embarrassing lab accidents you could imagine. The acts were by people from a range of scientific disciplines and backgrounds including PhD students, a lecturer, and a professional science communicator. 

I can’t say much more to describe the experience itself, but if you want an idea of what it’s like, you can check out some recorded previous sets (while there is some rather questionable footage of my own act, there is not a chance I’m sharing it here – I’m not that confident :P). Or of course, go attend the next Science Showoff or a similar science comedy event. 

What I would say though is if you also want to do climate science communication (or try a different format for it) and are a fan of comedy (looking at any and all Met Panto-ers especially here) then you should consider giving this a go! Yes, even if you’ve never done stand-up comedy before… I mean it can’t be more embarrassing than acting out a lecturer in Panto while they watch! 

Any questions about the experience or want to be persuaded to give it a try??? Feel free to comment or email me 🙂