North American weather regimes and the stratospheric polar vortex

s.h.lee@pgr.reading.ac.uk

The use of weather regimes offers the ability to categorise the large-scale atmospheric circulation pattern over a region on any given day. One way of doing this is through k-means clustering of the 500 hPa geopotential height anomaly field. Cassou (2008) determined the lagged influence of the Madden-Julian Oscillation (MJO) on four wintertime regimes over the North Atlantic; these regimes have subsequently become commonly used (e.g. they are in use operationally at ECMWF). Charlton-Perez et al. (2018) used the same four regimes to describe the influence of the stratospheric polar vortex on Atlantic circulation patterns.

Stratosphere-troposphere coupling is often described in terms of either the annular modes (the leading principal component (PC) of hemisphere-wide variability, often known as the Arctic and Antarctic Oscillations (AO/AAO) when discussing the lower-troposphere) or regional leading principal components (such as the North Atlantic Oscillation (NAO)). However, by their definition, this doesn’t tell the full story – only some percentage of it (around 1/3 for the NAO). The downward coupling of stratospheric circulation anomalies onto tropospheric weather patterns is an area of active research. For example, not every sudden stratospheric warming (SSW) event exhibits the “canonical” response in the troposphere of a strongly negative NAO-type pattern (Karpechko et al. 2017, Domeisen et al. 2020).

Could regimes tell us something more? Specifically – could they shed light onto the impact of the stratosphere on North America, which has been under-explored compared with Europe? In a recent paper (Lee et al. 2019), we look at just that.

We use 500 hPa geopotential height anomalies in the sector 20-80°N 180-30°W from ERA-Interim reanalysis for December—March 1979—2017. In order to describe only the large-scale variability, we first reduced the dimensionality of the problem by performing the clustering on a filtered dataset – achieved by retaining only the first 12 PCs which explain 80% of the variance in the dataset. We set k a priori to be 4 in the ­k-means clustering, following Vigaud et al. (2018). The number of clusters is somewhat arbitrary, but 4 has been shown to be significant when comparing with a reference noise model (i.e., testing if the clusters are just the result of forcefully clustering noise, or something meaningful). Once the clusters have been determined from analysis of the dataset – the “centroids” – each day in the dataset is assigned to one of the clusters. The patterns produced (Figure 1) are like a similar analysis in Straus et al. (2007) so we adopt their names.

Figure 1: 500 hPa geopotential height anomalies for the four North American weather regimes. Anomalies are expressed with respect to a linearly de-trended 1979-2017 base period. Stippling indicates significance at the 95% confidence level according to a two-sided bootstrap re-sampling test.

To diagnose how these regimes vary with the state of the stratospheric vortex, we compute some statistics (Figure 2) based on the tercile category of the 100 hPa 60°N zonal-mean zonal wind on the preceding day (“strong”, “neutral”, and “weak”). 100 hPa is used as a lower-stratospheric measure (compared with 10 hPa used for diagnosing major sudden stratospheric warmings) to assess only those anomalies in the stratosphere which have the potential to influence tropospheric weather.

Figure 2: Probabilities of (a) occurrence, (b) persistence, and (c) transition from another regime into each regime stratified by the tercile anomaly categories of 100 hPa 60°N zonal-mean zonal wind. Error bars indicate 95% binomial proportion confidence intervals where the sample size has been scaled to account for lag-1 autocorrelation.

Evidently, the Arctic High regime is strongly sensitive to the strength of the stratospheric winds, being 7 times more likely following a weak vortex versus a strong vortex. The Arctic Low regime displays the opposite sensitivity, being more likely following a strong vortex. A similar but weaker relationship is found for the Pacific Trough. The Alaskan Ridge regime, however, does not display a sensitivity to the vortex strength. This result was somewhat surprising as the Alaskan Ridge regime resembles a pattern which became known as a “polar vortex outbreak”, but we suggest that (a) the similarity of the pattern to the Tropical-Northern Hemisphere pattern may indicate tropospheric forcing exhibits greater control on this regime, and (b) a possible influence through a barotropic anomaly exists from a distortion of the stratospheric vortex (which is not manifest in the zonal-mean zonal wind).

We relate these regimes to impactful real-world weather by computing the probability of an extreme cold temperature (defined as 1.5 standard deviations below normal) in each regime (Figure 3). We find that the greatest likelihood of widespread extreme cold in North America is during the Alaskan Ridge regime, with secondary likelihood of extreme cold for the west coast during the Arctic Low (recall that this pattern is more likely following a strong vortex), and only a low probability during the Arctic High regime (which is strongly associated with extreme cold in Europe).

Figure 3: Proportion of days assigned into each regime over the period 1 January 1979-31 December 2017 (DJFM days only) where normalised temperatures dropped below -1.5 standard deviations. Stippling indicates 95% confidence according to a one-sided bootstrap re-sampling test.

Our results therefore suggest that the strength of the stratospheric polar vortex does not change the likelihood of the circulation pattern with the greatest potential for driving extreme cold weather in North America (in stark contrast to Europe), and that prediction of this pattern should look elsewhere – either to the tropics, or to changes in the shape of the stratospheric vortex – including wave reflection events (Kodera et al. 2008, Kretschmer et al. 2018).

Further work will investigate how well these regimes and their response to changes in the stratosphere are captured by the extended-range forecasting models which comprise the S2S database.

This work was funded by the NERC SCENARIO doctoral training partnership.

Sudden Stratospheric Warming does not always equal Sudden Snow Shoveling

Email: s.h.lee@pgr.reading.ac.uk

During winter, the poles enter permanent darkness (“the polar night”) and undergo strong radiative cooling. In the stratosphere – a dry, stable layer of the atmosphere around 10-50 km above the surface – this cooling is particularly effective. By thermal wind balance, the strong polar cooling leads to the formation of the stratospheric polar vortex (SPV), a planetary scale westerly circulation that sits atop each winter pole (Figure 1).

Figure 1: The Arctic stratospheric polar vortex, here shown at 10 hPa, on March 12, 2019. Geopotential height is contoured, and filled colours show the wind speed in m/s. The zonal-mean zonal wind at 60°N is shown in the bottom left, a commonly used diagnostic of the strength of the SPV. After Figure 6 in Lee and Butler (2019).

In the Northern Hemisphere, the SPV is highly variable, thanks to the generation of large planetary waves in the mid-latitude westerly flow (driven primarily by mountains and land-sea contrast around the continents), which can propagate vertically into the stratosphere and break there, decelerating and deforming the SPV and warming the stratosphere.  In the Antarctic, the presence of the Southern Ocean in the mid-to-high latitudes encircling Antarctica means no similar waves are typically produced. The Antarctic SPV is therefore much stronger than its Arctic counterpart, which is why the ozone hole developed there rather than over the Arctic – with the colder temperatures inside the vortex allowing for the formation of polar stratospheric clouds, which catalyse the reactions that deplete ozone.

Now, since all the weather we experience takes place in the troposphere, you might wonder why we should worry about what happens in the layer above that. In the past, numerical weather prediction models did not resolve the stratosphere, because it wasn’t considered worth the extra computational resources. However, it is now known that the state of the SPV can act as a boundary condition to weather forecasts (especially long-range forecasts that extend beyond 2 weeks ahead, e.g. Scaife et al. (2016)) in a similar way to sea surface temperatures (SSTs). One of the reasons for this is the longer timescales present in the stratosphere (also analogous to SSTs) compared with tropospheric weather systems – an anomaly present in the stratosphere has a long persistence time. But how do these stratospheric anomalies influence the weather we experience?

Let’s take one particularly exciting case of SPV variability: major sudden stratospheric warmings (SSWs). SSWs (defined by the 10 hPa 60°N zonal-mean zonal wind reversing from westerlies to easterlies) occur on average 6 times per decade (Butler et al. 2017) and are associated with either a displacement of the SPV off the Pole, or a split of the SPV into two daughter vortices. Coincident with this is a rapid heating of the polar stratosphere (~50°C in a few days) due to adiabatic warming of descending air – hence the name. The most recent major SSW occurred on 2 January 2019 (Figure 2), but one also occurred on 12 February 2018.

Figure 2: As in Figure 1 but for 2 January 2019 (after Figure 4 in Lee and Butler (2019)).

Following a major SSW, the easterly winds descend through the stratosphere over the next few weeks and tend to persist for weeks to months in the lower stratosphere. What happens beneath that in the troposphere is then more varied, but on average there is a transition to a negative Northern Annular Mode (NAM). In a negative NAM, the mid-latitude westerlies associated with the tropospheric jet stream weaken and shift equatorward, increasing the likelihood of cold air outbreaks (and, yes, snow!) in places like the UK and northern Europe (Figure 3). However, that’s only the average response!

Figure 3: Average surface temperature anomaly for days 0-30 following all major SSWs in ERA-Interim 1979-2014. [Source: SSW Compendium]

In February-March 2018, we did indeed see this response following a major SSW – immortalised as the ‘Beast from the East’ with record-breaking cold weather and heavy snowfall in the UK (e.g. Greening and Hodgson 2019). But following the January 2019 SSW, there was no similar weather pattern. Figure 4 shows a cross-section of polar cap geopotential height anomalies (analogous to the NAM). Reds effectively indicate weaker westerly winds, and the major SSW is evident in the centre (second dashed line from the left). However, it doesn’t persistently “drip” down into the troposphere below 200 hPa, with only a brief “drip” in early February 2019. For the most part, the stratosphere and troposphere did not “talk” to each other.

Figure 4: 60-90°N geopotential height anomaly time-height cross-section for August 2018-May 2019. Vertical dashed lines indicate (left-right) the SPV spin-up, the major SSW, a strong vortex event (Tripathi et al. 2015), and the vortex dissipation. (After Figure 8 in Lee and Butler (2019).)

This SSW was thus “non-downward propagating” (Karpechko et al. 2017), which is the case with somewhere close to half of the observed events.

Why?

Some research suggests this may be due to the type of SSW (split vs. displacement, e.g. Mitchell et al. 2013), the tropospheric weather regimes present following the SSW (e.g. Charlton-Perez et al. 2018), the evolution of the SSW (e.g. Karpechko et al. 2017), the interaction of the vertically-propagating waves with the SPV at the time of the SSW (e.g. Kodera et al. 2016), or some combination of those. Perhaps other forcing from the troposphere may dominate over the signal from the stratosphere – such as the teleconnection of the Madden-Julian Oscillation (MJO) to the North Atlantic weather regimes (e.g. Cassou 2008).

Thus, whilst an SSW may make cold weather more likely, it’s by no means guaranteed – and we still don’t fully understand the mechanisms involved with downward coupling. That’s one of the reasons why, regardless of what the tabloids may tell you, sudden stratospheric warming does not always guarantee sudden snow shoveling!

References

Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth System Science Data, https://doi.org/10.5194/essd-9-63-2017

Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, https://doi.org/10.1038/nature07286

Charlton-Perez, A. J., L. Ferranti, and R. W. Lee, 2018: The influence of the stratospheric state on North Atlantic weather regimes. Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.3280

Greening, K., and A. Hodgson, 2019: Atmospheric analysis of the cold late February and early March 2018 over the UK. Weather, https://doi.org/10.1002/wea.3467

Karpechko, A. Yu., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.3017

Kodera, K., H. Mukougawa, P. Maury, M. Ueda, and C. Claud, 2016: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. Journal of Geophysical Research: Atmospheres, https://doi.org/10.1002/2015JD023359

Lee, S. H., and A. H. Butler, 2019: The 2018-2019 Arctic stratospheric polar vortex. Weather, https://doi.org/10.1002/wea.3643

Mitchell, D. M., L. J. Gray, J. Antsey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The Influence of Stratospheric Vortex Displacements and Splits on Surface Climate. Journal of Climate, https://doi.org/10.1175/JCLI-D-12-00030.1

Scaife, A. A., A. Yu. Karpechko, M. P. Baldwin, A. Brookshaw, A. H. Butler, R. Eade, M. Gordon, C. MacLachlan, N. Martin, N. Dunstone, and D. Smith, 2016: Seasonal winter forecasts and the stratosphere. Atmospheric Science Letters, https://doi.org/10.1002/asl.598

Tripathi, O. P, A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environmental Research Letters, https://doi.org/10.1088/1748-9326/10/10/104007