North American weather regimes and the stratospheric polar vortex

s.h.lee@pgr.reading.ac.uk

The use of weather regimes offers the ability to categorise the large-scale atmospheric circulation pattern over a region on any given day. One way of doing this is through k-means clustering of the 500 hPa geopotential height anomaly field. Cassou (2008) determined the lagged influence of the Madden-Julian Oscillation (MJO) on four wintertime regimes over the North Atlantic; these regimes have subsequently become commonly used (e.g. they are in use operationally at ECMWF). Charlton-Perez et al. (2018) used the same four regimes to describe the influence of the stratospheric polar vortex on Atlantic circulation patterns.

Stratosphere-troposphere coupling is often described in terms of either the annular modes (the leading principal component (PC) of hemisphere-wide variability, often known as the Arctic and Antarctic Oscillations (AO/AAO) when discussing the lower-troposphere) or regional leading principal components (such as the North Atlantic Oscillation (NAO)). However, by their definition, this doesn’t tell the full story – only some percentage of it (around 1/3 for the NAO). The downward coupling of stratospheric circulation anomalies onto tropospheric weather patterns is an area of active research. For example, not every sudden stratospheric warming (SSW) event exhibits the “canonical” response in the troposphere of a strongly negative NAO-type pattern (Karpechko et al. 2017, Domeisen et al. 2020).

Could regimes tell us something more? Specifically – could they shed light onto the impact of the stratosphere on North America, which has been under-explored compared with Europe? In a recent paper (Lee et al. 2019), we look at just that.

We use 500 hPa geopotential height anomalies in the sector 20-80°N 180-30°W from ERA-Interim reanalysis for December—March 1979—2017. In order to describe only the large-scale variability, we first reduced the dimensionality of the problem by performing the clustering on a filtered dataset – achieved by retaining only the first 12 PCs which explain 80% of the variance in the dataset. We set k a priori to be 4 in the ­k-means clustering, following Vigaud et al. (2018). The number of clusters is somewhat arbitrary, but 4 has been shown to be significant when comparing with a reference noise model (i.e., testing if the clusters are just the result of forcefully clustering noise, or something meaningful). Once the clusters have been determined from analysis of the dataset – the “centroids” – each day in the dataset is assigned to one of the clusters. The patterns produced (Figure 1) are like a similar analysis in Straus et al. (2007) so we adopt their names.

Figure 1: 500 hPa geopotential height anomalies for the four North American weather regimes. Anomalies are expressed with respect to a linearly de-trended 1979-2017 base period. Stippling indicates significance at the 95% confidence level according to a two-sided bootstrap re-sampling test.

To diagnose how these regimes vary with the state of the stratospheric vortex, we compute some statistics (Figure 2) based on the tercile category of the 100 hPa 60°N zonal-mean zonal wind on the preceding day (“strong”, “neutral”, and “weak”). 100 hPa is used as a lower-stratospheric measure (compared with 10 hPa used for diagnosing major sudden stratospheric warmings) to assess only those anomalies in the stratosphere which have the potential to influence tropospheric weather.

Figure 2: Probabilities of (a) occurrence, (b) persistence, and (c) transition from another regime into each regime stratified by the tercile anomaly categories of 100 hPa 60°N zonal-mean zonal wind. Error bars indicate 95% binomial proportion confidence intervals where the sample size has been scaled to account for lag-1 autocorrelation.

Evidently, the Arctic High regime is strongly sensitive to the strength of the stratospheric winds, being 7 times more likely following a weak vortex versus a strong vortex. The Arctic Low regime displays the opposite sensitivity, being more likely following a strong vortex. A similar but weaker relationship is found for the Pacific Trough. The Alaskan Ridge regime, however, does not display a sensitivity to the vortex strength. This result was somewhat surprising as the Alaskan Ridge regime resembles a pattern which became known as a “polar vortex outbreak”, but we suggest that (a) the similarity of the pattern to the Tropical-Northern Hemisphere pattern may indicate tropospheric forcing exhibits greater control on this regime, and (b) a possible influence through a barotropic anomaly exists from a distortion of the stratospheric vortex (which is not manifest in the zonal-mean zonal wind).

We relate these regimes to impactful real-world weather by computing the probability of an extreme cold temperature (defined as 1.5 standard deviations below normal) in each regime (Figure 3). We find that the greatest likelihood of widespread extreme cold in North America is during the Alaskan Ridge regime, with secondary likelihood of extreme cold for the west coast during the Arctic Low (recall that this pattern is more likely following a strong vortex), and only a low probability during the Arctic High regime (which is strongly associated with extreme cold in Europe).

Figure 3: Proportion of days assigned into each regime over the period 1 January 1979-31 December 2017 (DJFM days only) where normalised temperatures dropped below -1.5 standard deviations. Stippling indicates 95% confidence according to a one-sided bootstrap re-sampling test.

Our results therefore suggest that the strength of the stratospheric polar vortex does not change the likelihood of the circulation pattern with the greatest potential for driving extreme cold weather in North America (in stark contrast to Europe), and that prediction of this pattern should look elsewhere – either to the tropics, or to changes in the shape of the stratospheric vortex – including wave reflection events (Kodera et al. 2008, Kretschmer et al. 2018).

Further work will investigate how well these regimes and their response to changes in the stratosphere are captured by the extended-range forecasting models which comprise the S2S database.

This work was funded by the NERC SCENARIO doctoral training partnership.

2019 on The Social Metwork

It’s been quite a busy and successful year here on The Social Metwork, and my first full calendar year as Editor after taking over in October 2018. We’ve had some great contributions on all sorts of topics, from published research to summer schools, conferences, and PhD tips. I’d like to extend my thanks and praise to everyone who has contributed a post or reviewed a submission this year – thank you for taking the time out from your busy PhD life! To those of you who have since finished your PhD, congratulations and all the best for the future. I’d also like to thank everyone who visited the site from around the world (over 5000 of you) and read our blog posts – you’re the reason we do this! – Simon, Editor.

To wrap up 2019, here is a list of all this year’s 32 posts, in case you missed any.

AMS Annual Meeting 2019 – Lewis Blunn

My tips, strategies and hacks as a PhD student – Mark Prosser

Going Part-time… – Rebecca Couchman-Crook

Quantifying the skill of convection-permitting ensemble forecasts for the sea-breeze occurrence – Carlo Cafaro

Is our “ECO mode” hot water boiler eco-friendly? – Mark Prosser

Evaluating aerosol forecasts in London – Elliott Warren

APPLICATE General Assembly and Early Career Science event – Sally Woodhouse

The Circumglobal Teleconnection and its Links to Seasonal Forecast Skill for the European Summer – Jonathan Beverley

Extending the predictability of flood hazard at the global scale – Rebecca Emerton

On relocating to the Met Office for five weeks of my PhD – Kaja Milczewska

Workshop on Predictability, dynamics and applications research using the TIGGE and S2S ensembles – Simon Lee

Representing the organization of convection in climate models – Mark Muetzelfeldt

EGU 2019 – Bethan Harris and Sally Woodhouse

Investigating the use of early satellite data to test historical reconstructions of sea surface temperature – Thomas Hall

Island convection and its many shapes and forms: a closer look at cloud trails – Michael Johnston

PhD Visiting Scientist 2019: Prof. Cecilia Blitz – Rebecca Frew

Met Department Summer BBQ 2019 – Mark Prosser

Simulating measurements from the ISMAR radiometer using a new light scattering approximation – Karina McCusker

RMetS Student and Early Career Scientists Conference 2019 – Dom Jones

The 2nd ICTP Summer School in Hierarchical Modelling of Climate Dynamics – Kieran Pope

The 27th General Assembly of the International Union of Geodesy and Geophysics (IUGG) in Montreal, Canada – Tsz Yan (Adrian) Leung

The Colour of Climate – Jake Gristey

Fluid Dynamics of Sustainability and the Environment Summer School – Mark Prosser

SWIFT and YESS International Summer School, Kumasi, Ghana – Alex Doyle

Wisdom from experience: advice for new PhD students – Simon Lee and Sally Woodhouse

On relocating to Oklahoma for 3.5 months – Simon Lee

Characterising the seasonal and geographical variability in tropospheric ozone, stratospheric influence and recent changes – Ryan Williams

Combining multiple streams of environmental data into a soil moisture dataset – Amsale Ejigu

How much energy is available in a moist atmosphere? – Bethan Harris

The Variation of Geomagnetic Storm Duration with Intensity – Carl Haines

The impact of atmospheric model resolution on the Arctic – Sally Woodhouse

Sudden Stratospheric Warming does not always equal Sudden Snow Shoveling – Simon Lee

Sudden Stratospheric Warming does not always equal Sudden Snow Shoveling

Email: s.h.lee@pgr.reading.ac.uk

During winter, the poles enter permanent darkness (“the polar night”) and undergo strong radiative cooling. In the stratosphere – a dry, stable layer of the atmosphere around 10-50 km above the surface – this cooling is particularly effective. By thermal wind balance, the strong polar cooling leads to the formation of the stratospheric polar vortex (SPV), a planetary scale westerly circulation that sits atop each winter pole (Figure 1).

Figure 1: The Arctic stratospheric polar vortex, here shown at 10 hPa, on March 12, 2019. Geopotential height is contoured, and filled colours show the wind speed in m/s. The zonal-mean zonal wind at 60°N is shown in the bottom left, a commonly used diagnostic of the strength of the SPV. After Figure 6 in Lee and Butler (2019).

In the Northern Hemisphere, the SPV is highly variable, thanks to the generation of large planetary waves in the mid-latitude westerly flow (driven primarily by mountains and land-sea contrast around the continents), which can propagate vertically into the stratosphere and break there, decelerating and deforming the SPV and warming the stratosphere.  In the Antarctic, the presence of the Southern Ocean in the mid-to-high latitudes encircling Antarctica means no similar waves are typically produced. The Antarctic SPV is therefore much stronger than its Arctic counterpart, which is why the ozone hole developed there rather than over the Arctic – with the colder temperatures inside the vortex allowing for the formation of polar stratospheric clouds, which catalyse the reactions that deplete ozone.

Now, since all the weather we experience takes place in the troposphere, you might wonder why we should worry about what happens in the layer above that. In the past, numerical weather prediction models did not resolve the stratosphere, because it wasn’t considered worth the extra computational resources. However, it is now known that the state of the SPV can act as a boundary condition to weather forecasts (especially long-range forecasts that extend beyond 2 weeks ahead, e.g. Scaife et al. (2016)) in a similar way to sea surface temperatures (SSTs). One of the reasons for this is the longer timescales present in the stratosphere (also analogous to SSTs) compared with tropospheric weather systems – an anomaly present in the stratosphere has a long persistence time. But how do these stratospheric anomalies influence the weather we experience?

Let’s take one particularly exciting case of SPV variability: major sudden stratospheric warmings (SSWs). SSWs (defined by the 10 hPa 60°N zonal-mean zonal wind reversing from westerlies to easterlies) occur on average 6 times per decade (Butler et al. 2017) and are associated with either a displacement of the SPV off the Pole, or a split of the SPV into two daughter vortices. Coincident with this is a rapid heating of the polar stratosphere (~50°C in a few days) due to adiabatic warming of descending air – hence the name. The most recent major SSW occurred on 2 January 2019 (Figure 2), but one also occurred on 12 February 2018.

Figure 2: As in Figure 1 but for 2 January 2019 (after Figure 4 in Lee and Butler (2019)).

Following a major SSW, the easterly winds descend through the stratosphere over the next few weeks and tend to persist for weeks to months in the lower stratosphere. What happens beneath that in the troposphere is then more varied, but on average there is a transition to a negative Northern Annular Mode (NAM). In a negative NAM, the mid-latitude westerlies associated with the tropospheric jet stream weaken and shift equatorward, increasing the likelihood of cold air outbreaks (and, yes, snow!) in places like the UK and northern Europe (Figure 3). However, that’s only the average response!

Figure 3: Average surface temperature anomaly for days 0-30 following all major SSWs in ERA-Interim 1979-2014. [Source: SSW Compendium]

In February-March 2018, we did indeed see this response following a major SSW – immortalised as the ‘Beast from the East’ with record-breaking cold weather and heavy snowfall in the UK (e.g. Greening and Hodgson 2019). But following the January 2019 SSW, there was no similar weather pattern. Figure 4 shows a cross-section of polar cap geopotential height anomalies (analogous to the NAM). Reds effectively indicate weaker westerly winds, and the major SSW is evident in the centre (second dashed line from the left). However, it doesn’t persistently “drip” down into the troposphere below 200 hPa, with only a brief “drip” in early February 2019. For the most part, the stratosphere and troposphere did not “talk” to each other.

Figure 4: 60-90°N geopotential height anomaly time-height cross-section for August 2018-May 2019. Vertical dashed lines indicate (left-right) the SPV spin-up, the major SSW, a strong vortex event (Tripathi et al. 2015), and the vortex dissipation. (After Figure 8 in Lee and Butler (2019).)

This SSW was thus “non-downward propagating” (Karpechko et al. 2017), which is the case with somewhere close to half of the observed events.

Why?

Some research suggests this may be due to the type of SSW (split vs. displacement, e.g. Mitchell et al. 2013), the tropospheric weather regimes present following the SSW (e.g. Charlton-Perez et al. 2018), the evolution of the SSW (e.g. Karpechko et al. 2017), the interaction of the vertically-propagating waves with the SPV at the time of the SSW (e.g. Kodera et al. 2016), or some combination of those. Perhaps other forcing from the troposphere may dominate over the signal from the stratosphere – such as the teleconnection of the Madden-Julian Oscillation (MJO) to the North Atlantic weather regimes (e.g. Cassou 2008).

Thus, whilst an SSW may make cold weather more likely, it’s by no means guaranteed – and we still don’t fully understand the mechanisms involved with downward coupling. That’s one of the reasons why, regardless of what the tabloids may tell you, sudden stratospheric warming does not always guarantee sudden snow shoveling!

References

Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth System Science Data, https://doi.org/10.5194/essd-9-63-2017

Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, https://doi.org/10.1038/nature07286

Charlton-Perez, A. J., L. Ferranti, and R. W. Lee, 2018: The influence of the stratospheric state on North Atlantic weather regimes. Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.3280

Greening, K., and A. Hodgson, 2019: Atmospheric analysis of the cold late February and early March 2018 over the UK. Weather, https://doi.org/10.1002/wea.3467

Karpechko, A. Yu., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.3017

Kodera, K., H. Mukougawa, P. Maury, M. Ueda, and C. Claud, 2016: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. Journal of Geophysical Research: Atmospheres, https://doi.org/10.1002/2015JD023359

Lee, S. H., and A. H. Butler, 2019: The 2018-2019 Arctic stratospheric polar vortex. Weather, https://doi.org/10.1002/wea.3643

Mitchell, D. M., L. J. Gray, J. Antsey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The Influence of Stratospheric Vortex Displacements and Splits on Surface Climate. Journal of Climate, https://doi.org/10.1175/JCLI-D-12-00030.1

Scaife, A. A., A. Yu. Karpechko, M. P. Baldwin, A. Brookshaw, A. H. Butler, R. Eade, M. Gordon, C. MacLachlan, N. Martin, N. Dunstone, and D. Smith, 2016: Seasonal winter forecasts and the stratosphere. Atmospheric Science Letters, https://doi.org/10.1002/asl.598

Tripathi, O. P, A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environmental Research Letters, https://doi.org/10.1088/1748-9326/10/10/104007

On relocating to Oklahoma for 3.5 months

Email: s.h.lee@pgr.reading.ac.uk

From May 4th through August 10th 2019, I relocated to Norman, Oklahoma, where I worked in the School of Meteorology in the National Weather Center (NWC) at the University of Oklahoma (OU). I’m co-supervised by Jason Furtado at OU, and part of my SCENARIO-funded project plan involves visiting OU each summer to work with Dr. Furtado’s research group, while using my time in the U.S. to visit relavant academics and conferences. Prior to my PhD, I studied Reading’s MMet Meteorology and Climate with a Year in Oklahoma degree, and spent 9 months at OU as part of that – so it’s a very familiar place! The two departments have a long-standing link, but this is the first time there has been PhD-supervision collaboration.

The National Weather Center in Norman, Oklahoma – home to the School of Meteorology.

The National Weather Center (NWC) [first conceived publicly in a 1999 speech by President Bill Clinton in the aftermath of the Bridge Creek-Moore tornado] opened in 2006 and is a vastly bigger building than Reading Meteorology! Alongside the School of Meteorology (SoM), it houses the Oklahoma Mesonet, the NOAA Storm Prediction Center (SPC) (who are responsible for operational severe weather and fire forecasting in the U.S.) and the NOAA National Severe Storms Laboratory (NSSL). SPC and NSSL will be familiar to any of you who have seen the 1996 film Twister. You could think of it as somewhat like a smaller version of the Reading Meteorology department being housed in the Met Office HQ in Exeter.

Inside the NWC.

The research done at SoM is mostly focussed on mesoscale dynamics, including tornadogenesis, thanks to its location right at the heart of ‘tornado alley’. It’s by no means a typical haunt of someone who researches stratosphere dynamics like I do, but SoM has broadened its focus in recent years with the inception of the Applied Climate Dynamics research group of which I’m a part. Aside from the numerous benefits of being able to speak face-to-face with a supervisor who is otherwise stuck on a TV screen on Skype, I also learnt new skills and new ways of thinking – purely from being at a different institution in a different country. I also used this time to work on the impact of the stratosphere on North America (a paper from this work is currently in review).

I also visited the NOAA Earth System Research Laboratory (ESRL) in Boulder, Colorado to present some of my work, and collaborate on some papers with scientists there. Boulder is an amazing place, and I highly recommend going and hiking up into the mountains if you can (see also this 2018 blog post from Jon Beverley on his visit to Boulder).

As for leisure… I chose to take 2 weeks holiday in late May to, let’s say, do “outdoor atmospheric exploration“. This happened to coincide with the peak of one of the most active tornado seasons in recent years, and I just so happened to see plenty of them. I’m still working on whether or not the stratosphere played a role in the weather patterns responsible for the outbreak!

An EF2-rated wedge tornado on 23 May near Canadian, Texas.

Wisdom from experience: advice for new PhD students

The new academic year is now underway, and a new bunch of eager first year PhD students are dipping their toes into a three-to-four year journey to their doctorate. So, we’ve collated some advice from the more experienced among us! The idea behind the following tidbits of advice is that they are things we would tell our younger selves if we could go back to day 1…

Work

“Make sure you and your supervisor set out expectations and at least a vague timeline at the start, that way you will know you’re on track.”

“Write code as if you’re giving it to someone else – one day you might have to.”

Even if you don’t give your code to another use, in a year’s time you’ll have forgotten what it does! Related to this, it’s useful to keep good “readme” documents to note where all your code is, how to run things, etcetera. Also, if you think you’re going to present a plot at some point – in a talk, paper, or even your thesis, make a final version at the time (using appropriately accessible colour maps and big enough labels), plus note down where you’ve stored the code you used to make it.

“Learn and use git/github (or at least get familiar with the 3 basic commands of: git add, commit, push) ASAP! This means that if you take a wrong turn in your code (you will), you can painlessly ‘revert’ to a stage before you made a mess.”

“Read papers with your literature review in mind. If you can’t see where the paper will fit in your literature review, either reconsider your literature review… or find a more relevant paper.”

“Write down everything you learn, or facts you are told – you never know when you’ll need a piece of information again.”

But also be prepared to have not really followed any of this advice properly until you regurgitate it to new students in your fourth year and wonder why you haven’t been doing any of it up until now.

“Try to keep up a good routine – it’s much easier to get out of bed when you’re having a slow work week if that’s what your body is used to.”

“You’ll be amazed at how much you’ll learn and master without even realising.”

“Don’t compare yourself to others.”

Every PhD project is unique, as is every student. During a PhD, you’re looking into the unknown. Maybe you’ll get lucky (with some hard work) and have some really interesting results, or it might be a bit of a battle. Some projects are more suited to regular publications, others less so – this doesn’t necessarily reflect your individual abilities. In addition, everyone has different background knowledge and motivation for doing a PhD.

“Not every day has to be maximum productivity, that’s okay!”

“Some days are great, others are rubbish. Like life, really.”

Life

“Make friends with other PhD students. It’s nice to have someone who might make you cake when you feel sad, or happy.”

This is so true. A PhD is quite a unique experience and lots of people don’t really get it, thinking it’s just like another undergrad. Sometimes it’s really useful to have someone who understands the stress of some code just not working, or the dread of a blank page where your monitoring committee report should be. It’s also helpful to get to know people in the years above, or even post-docs, since they’ve probably already gone through what you’re experiencing.

“Make friends and join clubs and societies with people that aren’t doing PhDs.”

Sometimes it’s important to get out of the PhD “bubble” and put things in perspective. Keeping in touch with friends that have “real” jobs (for want of a better word) can be a nice reminder of some of the benefits of PhD life – such as flexible hours (you don’t have to be in before 9 every day) or not having to wear formal business attire.

Wellbeing

“Try to keep your weekends free – it’s great for your sanity!”

“Take holiday! You are expected to.”

“Don’t feel guilty for not cheering up when people tell you everything’s okay. It almost invariably is, but sometimes it all gets a bit much and you’ll feel bad for a while, that’s totally normal!”

Yes, it’s totally okay to have a couple of bad days. Remember, this can often be true of people with ‘real’ jobs, it isn’t just unique to the PhD experience! However, if you’re feeling bad for a long period of time, it’s important to acknowledge that this isn’t okay and you don’t have to feel like that. It might be helpful to let your supervisor know that you’re having a bit of a hard time, for whatever reason, and work might be slow for a while. There are also lots of support systems available. For students at Reading, you can find out more about the Counselling and Wellbeing Service here (http://www.reading.ac.uk/cou/counselling-services-landing.aspx). A PhD is hard work, but it should be a fundamentally enjoyable experience!

Finally:

“No poking your supervisor with a stick. They don’t appreciate it.”

(…no, we don’t get it either)


Co-written by Simon Lee and Sally Woodhouse, with anonymous pieces of advice collected from various PhD students in the Department of Meteorology.

Workshop on Predictability, dynamics and applications research using the TIGGE and S2S ensembles

Email: s.h.lee@pgr.reading.ac.uk

From April 2nd-5th I attended the workshop on Predictability, dynamics and applications research using the TIGGE and S2S ensembles at ECMWF in Reading. TIGGE (The International Grand Global Ensemble, formerly THORPEX International Grand Global Ensemble) and S2S (Sub-seasonal-to-Seasonal) are datasets hosted at primarily at ECMWF as part of initiatives by the World Weather Research Programme (WWRP) and the World Climate Research Programme (WCRP). TIGGE has been running since 2006 and stores operational medium-range forecasts (up to 16 days) from 10 global weather centres, whilst S2S has been operational since 2015 and houses extended-range (up to 60 days) forecasts from 11 different global weather centres (e.g. ECMWF, NCEP, UKMO, Meteo-France, CMA…etc.). The benefit of these centralised datasets is their common format, which enables straightforward data requests and multi-model analysis with minimal data manipulation allowing scientists to focus on doing science!

Attendees of the workshop came from around the world (not just Europe) although there was a particularly sizeable cohort from Reading Meteorology and NCAS.

Figure 1: Workshop group photo featuring the infamous ECMWF ducks!

In my PhD so far, I have been making extensive use of the S2S database – looking at both operational and re-forecast datasets to assess stratospheric predictability and biases – and it was rewarding to attend the workshop and see what a diverse range of applications the datasets have across the world. From the oceans to the stratosphere, tropics to poles, predictability mathematics to farmers and energy markets, it was immediately very clear that TIGGE and S2S are wonderfully useful tools for both the research and applications communities. A particular aim of the workshop was to discuss “user-oriented variables” – derived variables from model output which represent the meteorological conditions to which a user is sensitive (such as wind speed at a specific height for wind power applications).

The workshop mainly consisted of 15-minute conference-style talks in the main lecture theatre and poster sessions, but the final two days also featured parallel working group sessions of about 15 members each. The topics discussed in the working groups can be found here. I was part of working group 4, and we discussed dynamical processes and ensemble diagnostics. We reflected on some of the points raised by speakers over the preceding days – particular attention was given to diagnostics needed to understand dynamical effects of model biases (such as their influence on Rossby wave propagation and weather-regime transition) alongside what other variables researchers needed to make full use of the potentials S2S and TIGGE offer (I don’t think I could say “more levels in the stratosphere!” loudly enough – TIGGE does not go above 50 hPa, which is not useful when studying stratospheric warming events defined at 10 hPa).

Data analysis tools are also becoming increasingly important in atmospheric science. Several useful and perhaps less well-known tools were presented at the workshop – Mio Matsueda’s TIGGE and S2S museum websites provide a wide variety of pre-prepared plots of variables like the NAO and MJO which are excellent for exploratory data analysis without needing many gigabytes of data downloads. Figure 2 shows an example of NAO forecasts from S2S data – the systematic negative NAO bias at longer lead-times was frequently discussed during the workshop, whilst the inability to capture the transition to a positive NAO regime beginning around February 10th is worth further analysis. In addition to these, IRI’s Data Library has powerful abilities to manipulate, analyse, plot, and download data from various sources including S2S with server-side computation.


Figure 2: Courtesy of the S2S Museum, this figure shows S2S model forecasts of the NAO launched on January 31st 2019. The verifying scenario is shown in black, with ensemble means in grey. All models exhibited a negative ensemble-mean bias and did not capture the development of a positive NAO after February 10th.

It’s inspiring and motivating to be part of the sub-seasonal forecast research community and I’m excited to present some of my work in the near future!

TIGGE and S2S can be accessed via ECMWF’s Public Datasets web interface.

Night at the Museum!

On Friday November 30th, Prof. Paul Williams and I ran a ‘pop-up science’ station at the Natural History Museum’s “Lates” event (these are held on the last Friday of each month; the museum is open for all until 10pm, with additional events and activities). Our station was entitled “Turbulence Ahead”, and focused on communicating research under two themes:

  1.  Improving the predictability of clear-air turbulence (CAT) for aviation
  2.  The impact of climate change on aviation, particularly in terms of increasing CAT

There were several other stations, all run by NERC-funded researchers. Our stall went ‘live’ at 6 PM, and from that point on we were speaking almost constantly for the next 3.5 hours – with hundreds (not an exaggeration!) of people coming to our stall to find out more. Neither of us were able to take much of a break, and I’ve never had quite such a sore voice!

IMG_1769
Turbulence ahead? Not on this Friday evening!

Our discussions covered:

  • What is clear-air turbulence (CAT) and why is it hazardous to aviation?
  • How do we predict CAT? How has Paul’s work improved this?
  • How is CAT predicted to change in the future? Why?
  • What other ways does climate change affect aviation?

Those who came to our stall asked some very intelligent questions, and neither of us encountered a ‘climate denier’ – since we were speaking about a very applied impact of climate change, this was heartening. This impact of climate change is not often considered – it’s not as obvious as heatwaves or melting ice, but is a very real threat as shown in recent studies (e.g. Storer et al. 2017). It was a challenge to explain some of these concepts to the general public – some had heard of the jet stream, others had not, whilst some were physicists… and even the director of the British Geological Survey, John Ludden, turned up! It was interesting to hear from so many people who were self-titled “nervous flyers” and deeply concerned about the future potential for more unpleasant journeys.

I found the evening very rewarding; it was interesting to gauge a perspective of how the public perceive a scientist and their work, and it was amazing to see so many curious minds wanting to find out more about subjects with which they are not so familiar.

My involvement with this event stems from my MMet dissertation work with Paul and Tom Frame looking at the North Atlantic jet stream. Changes in the jet stream have large impacts on transatlantic flights (Williams 2016) and the frequency and intensity of CAT. Meanwhile, Paul was a finalist for the 2018 NERC Impact Awards in the Societal Impact category for his work on improving turbulence forecasts – he finished as runner-up in the ceremony which was held on Monday December 3rd.

So, yes, there may indeed be turbulent times ahead – but this Friday evening certainly went smoothly!

Email: s.h.lee@pgr.reading.ac.uk

Twitter: @SimonLeeWx

References

Storer, L. N., P. D. Williams, and M. M. Joshi, 2017: Global Response of Clear-Air Turbulence to Climate Change. Geophys. Res. Lett., 44, 9979-9984, https://doi.org/10.1002/2017GL074618

Williams, P. D., 2016: Transatlantic flight times and climate change. Environ. Res. Lett., 11, 024008, https://doi.org/10.1088/1748-9326/11/2/024008.