Evaluating aerosol forecasts in London

Email: e.l.warren@pgr.reading.ac.uk

Aerosols in urban areas can greatly impact visibility, radiation budgets and our health (Chen et al., 2015). Aerosols make up the liquid and solid particles in the air that, alongside noxious gases like nitrogen dioxide, are the pollution in cities that we often hear about on the news – breaking safety limits in cities across the globe from London to Beijing. Air quality researchers try to monitor and predict aerosols, to inform local councils so they can plan and reduce local emissions.

Figure 1: Smog over London (Evening Standard, 2016).

Recently, large numbers of LiDARs (Light Detection and Ranging) have been deployed across Europe, and elsewhere – in part to observe aerosols. They effectively shoot beams of light into the atmosphere, which reflect off atmospheric constituents like aerosols. From each beam, many measurements of reflectance are taken very quickly over time – and as light travels further with more time, an entire profile of reflectance can be constructed. As the penetration of light into the atmosphere decreases with distance, the reflected light is usually commonly called attenuated backscatter (β). In urban areas, measurements away from the surface like these are sorely needed (Barlow, 2014), so these instruments could be extremely useful. When it comes to predicting aerosols, numerical weather prediction (NWP) models are increasingly being considered as an option. However, the models themselves are very computationally expensive to run so they tend to only have a simple representation of aerosol. For example, for explicitly resolved aerosol, the Met Office UKV model (1.5 km) just has a dry mass of aerosol [kg kg-1] (Clark et al., 2008). That’s all. It gets transported around by the model dynamics, but any other aerosol characteristics, from size to number, need to be parameterised from the mass, to limit computation costs. However, how do we know if the estimates of aerosol from the model are actually correct? A direct comparison between NWP aerosol and β is not possible because fundamentally, they are different variables – so to bridge the gap, a forward operator is needed.

In my PhD I helped develop such a forward operator (aerFO, Warren et al., 2018). It’s a model that takes aerosol mass (and relative humidity) from NWP model output, and estimates what the attenuated backscatter would be as a result (βm). From this, βm could be directly compared to βo and the NWP aerosol output evaluated (e.g. see if the aerosol is too high or low). The aerFO was also made to be computationally cheap and flexible, so if you had more information than just the mass, the aerFO would be able to use it!

Among the aerFO’s several uses (Warren et al., 2018, n.d.), was the evaluation of NWP model output. Figure 2 shows the aerFO in action with a comparison between βm and observed attenuated backscatter (βo) measured at 905 nm from a ceilometer (a type of LiDAR) on 14th April 2015 at Marylebone Road in London. βm was far too high in the morning on this day. We found that the original scheme the UKV used to parameterise the urban surface effects in London was leading to a persistent cold bias in the morning. The cold bias would lead to a high relative humidity, so consequently the aerFO condensed more water than necessary, onto the aerosol particles as a result, causing them to swell up too much. As a result, bigger particles mean bigger βm and an overestimation. Not only was the relative humidity too high, the boundary layer in the NWP model was developing too late in the day as well. Normally, when the surface warms up enough, convection starts, which acts to mix aerosol up in the boundary layer and dilute it near the surface. However, the cold bias delayed this boundary layer development, so the aerosol concentration near the surface remained high for too long. More mass led to the aerFO parameterising larger sizes and total numbers of particles, so overestimated βm. This cold bias effect was reflected across several cases using the old scheme but was notably smaller for cases using a newer urban surface scheme called MORUSES (Met Office – Reading Urban Surface Exchange Scheme). One of the main aims for MORUSES was to improve the representation of energy transfer in urban areas, and at least to us it seemed like it was doing a better job!

Figure 2: Vertical profiles of attenuated backscatter [m−1 sr−1] (log scale) that are (a, g) observed (βo) with estimated mixing layer height (red crosses, Kotthaus and Grimmond,2018) and (b, h) forward modelled (βm) using the aerFO (section 2).(c, i) Attenuated backscatter difference (βm – βo) calculated using the hourly βm vertical profile and the vertical profile of βo nearest in time; (d, j) aerosol mass mixing ratio (m) [μg kg−1]; (e, k) relative humidity (RH) [%] and (f, l) air temperature (T) [°C] at MR on 14th April 2015.

References

Barlow, J.F., 2014. Progress in observing and modelling the urban boundary layer. Urban Clim. 10, 216–240. https://doi.org/10.1016/j.uclim.2014.03.011

Chen, C.H., Chan, C.C., Chen, B.Y., Cheng, T.J., Leon Guo, Y., 2015. Effects of particulate air pollution and ozone on lung function in non-asthmatic children. Environ. Res. 137, 40–48. https://doi.org/10.1016/j.envres.2014.11.021

Clark, P.A., Harcourt, S.A., Macpherson, B., Mathison, C.T., Cusack, S., Naylor, M., 2008. Prediction of visibility and aerosol within the operational Met Office Unified Model. I: Model formulation and variational assimilation. Q. J. R. Meteorol. Soc. 134, 1801–1816. https://doi.org/10.1002/qj.318

Warren, E., Charlton-Perez, C., Kotthaus, S., Lean, H., Ballard, S., Hopkin, E., Grimmond, S., 2018. Evaluation of forward-modelled attenuated backscatter using an urban ceilometer network in London under clear-sky conditions. Atmos. Environ. 191, 532–547. https://doi.org/10.1016/j.atmosenv.2018.04.045

Warren, E., Charlton-Perez, C., Kotthaus, S., Marenco, F., Ryder, C., Johnson, B., Lean, H., Ballard, S., Grimmond, S., n.d. Observed aerosol characteristics to improve forward-modelled attenuated backscatter. Atmos. Environ. Submitted


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s