The Role of the Cloud Radiative Effect in the Sensitivity of the Intertropical Convergence Zone to Convective Mixing


Talib, J., S.J. Woolnough, N.P. Klingaman, and C.E. Holloway, 2018: The Role of the Cloud Radiative Effect in the Sensitivity of the Intertropical Convergence Zone to Convective Mixing. J. Climate, 31, 6821–6838,

Rainfall in the tropics is commonly associated with the Intertropical Convergence Zone (ITCZ), a discontinuous line of convergence collocated at the ascending branch of the Hadley circulation, where strong moist convection leads to high rainfall. What controls the location and intensity of the ITCZ remains a fundamental question in climate science.

Figure 1: Annual-mean, zonal-mean tropical precipitation (mm day-1) from Global Precipitation Climatology Project (GPCP, observations, solid black line) and CMIP5 (current coupled models) output. Dashed line indicates CMIP5 ensemble mean.

In current and previous generations of climate models, the ITCZ is too intense in the Southern Hemisphere, resulting in two annual-mean, zonal-mean tropical precipitation maxima, one in each hemisphere (Figure 1).  Even if we take the same atmospheric models and couple them to a world with only an ocean surface (aquaplanets) with prescribed sea surface temperatues (SSTs), different models simulate different ITCZs (Blackburn et al., 2013).

Within a climate model parameterisations are used to replace processes that are too small-scale or complex to be physically represented in the model. Parameterisation schemes are used to simulate a variety of processes including processes within the boundary layer, radiative fluxes and atmospheric chemistry. However my work, along with a plethora of others, shows that the representation of the ITCZ is sensitive to the convective parameterisation scheme (Figure 2a). The convective parameterisation scheme simulates the life cycle of clouds within a model grid-box.

Our method of showing that the simulated ITCZ is sensitive to the convective parameterisation scheme is by altering the convective mixing rate in prescribed-SST aquaplanet simulations. The convective mixing rate determines the amount of mixing a convective parcel has with the environmental air, therefore the greater the convective mixing rate, the quicker a convective parcel will become similar to the environmental air, given fixed convective parcel properties.

Figure 2: Zonal-mean, time-mean (a) precipitation rates (mm day-1}$) and (b) AEI (W m-2) in simulations where the convective mixing rate is varied.

In our study, the structure of the simulated ITCZ is sensitive to the convective mixing rate. Low convective mixing rates simulate a double ITCZ (two precipitation maxima, orange and red lines in Figure 2a), and high convective mixing rates simulate a single ITCZ (blue and black lines).

We then associate these ITCZ structures to the atmospheric energy input (AEI). The AEI is the amount of energy left in the atmosphere once considering the top of the atmosphere and surface energy budgets. We conclude, similar to Bischoff and Schneider, 2016, that when the AEI is positive (negative) at the equator, a single (double) ITCZ is simulated (Figure 2b). When the AEI is negative at the equator, energy is needed to be transported towards the equator for equilibrium. From a mean circulation perspective, this take place in a double ITCZ scenario (Figure 3). A positive AEI at the equator, is associated with poleward energy transport and a single ITCZ.

Figure 3: Schematic of a single (left) and double ITCZ (right). Blue arrows denote energy transport. In a single ITCZ scenario more energy is transported in the upper branches of the Hadley circulation, resulting in a net-poleward energy transport. In a double ITCZ scenario, more energy is transport equatorward than poleward at low latitudes, leading to an equatorward energy transport.

In our paper, we use this association between the AEI and ITCZ to hypothesize that without the cloud radiative effect (CRE), atmospheric heating due to cloud-radiation interactions, a double ITCZ will be simulated. We also hypothesize that prescribing the CRE will reduce the sensitivity of the ITCZ to convective mixing, as simulated AEI changes are predominately due to CRE changes.

In the rest of the paper we perform simulations with the CRE removed and prescribed to explore further the role of the CRE in the sensitivity of the ITCZ. We conclude that when removing the CRE a double ITCZ becomes more favourable and in both sets of simulations the ITCZ is less sensitive to convective mixing. The remaining sensitivity is associated with latent heat flux alterations.

My future work following this publication explores the role of coupling in the sensitivity of the ITCZ to the convective parameterisation scheme. Prescribing the SSTs implies an arbitary ocean heat transport, however in the real world the ocean heat transport is sensitive to the atmospheric circulation. Does this sensitivity between the ocean heat transport and atmospheric circulation affect the sensitivity of the ITCZ to convective mixing?

Thanks to my funders, SCENARIO NERC DTP, and supervisors for their support for this project.


Blackburn, M. et al., (2013). The Aqua-planet Experiment (APE): Control SST simulation. J. Meteo. Soc. Japan. Ser. II, 91, 17–56.

Bischoff, T. and Schneider, T. (2016). The Equatorial Energy Balance, ITCZ Position, and Double-ITCZ Bifurcations. J. Climate., 29(8), 2997–3013, and Corrigendum, 29(19), 7167–7167.


Hierarchies of Models

With thanks to Inna Polichtchouk.

General circulation models (GCMs) of varying complexity are used in atmospheric and oceanic sciences to study different atmospheric processes and to simulate response of climate to climate change and other forcings.

However, Held (2005) warned the climate community that the gap between understanding and simulating atmospheric and oceanic processes is becoming wider. He stressed the use of model hierarchies for improved understanding of the atmosphere and oceans (Fig. 1). Often at the bottom of the hierarchy lie the well-understood, idealized, one- or two-layer models.  In the middle of the hierarchy lie multi-layer models, which omit certain processes such as land-ocean-atmosphere interactions or moist physics. And finally, at the top of the hierarchy lie fully coupled atmosphere-ocean general circulation models that are used for climate projections. Such model hierarchies are already well developed in other sciences (Held 2005), such as molecular biology, where studying less complex animals (e.g. mice) infers something about the more complex humans (through evolution).

Figure 1: Model hierarchy of midlatitude atmosphere (as used for studying storm tracks). The simplest models are on the left and the most complex models are on the right. Bottom panels show eddy kinetic energy (EKE, contours) and precipitation (shading) with increase in model hierarchy (left-to-right): No precipitation in a dry core model (left), zonally homogeneous EKE and precipitation in an aquaplanet model (middle), and zonally varying EKE and precipitation in the most complex model (right). Source: Shaw et al. (2016), Fig. B2.

Model hierarchies have now become an important research tool to further our understanding of the climate system [see, e.g., Polvani et al. (2017), Jeevanjee et al. (2017), Vallis et al. (2018)]. This approach allows us to delineate most important processes responsible for circulation response to climate change (e.g., mid-latitude storm track shift, widening of tropical belt etc.), to perform hypothesis testing, and to assess robustness of results in different configurations.

In my PhD, I have extensively used the model hierarchies concept to understand mid-latitude tropospheric dynamics (Fig. 1). One-layer barotropic and two-layer quasi-geostrophic models are often used as a first step to understand large-scale dynamics and to establish the importance of barotropic and baroclinic processes (also discussed in my previous blog post). Subsequently, more realistic “dry” non-linear multi-layer models with simple treatment for boundary layer and radiation [the so-called “Held & Suarez” setup, first introduced in Held and Suarez (1994)] can be used to study zonally homogeneous mid-latitude dynamics without complicating the setup with physical parametrisations (e.g. moist processes), or the full range of ocean-land-ice-atmosphere interactions. For example, I have successfully used the Held & Suarez setup to test the robustness of the annular mode variability (see my previous blog post) to different model climatologies (Boljka et al., 2018). I found that baroclinic annular mode timescale and its link to the barotropic annular mode is sensitive to model climatology. This can have an impact on climate variability in a changing climate.

Additional complexity can be introduced to the multi-layer dry models by adding moist processes and physical parametrisations in the so-called “aquaplanet” setup [e.g. Neale and Hoskins (2000)]. The aquaplanet setup allows us to elucidate the role of moist processes and parametrisations on zonally homogeneous dynamics. For example, mid-latitude cyclones tend to be stronger in moist atmospheres.

To study effects of zonal asymmetries on the mid-latitude dynamics, localized heating or topography can be further introduced to the aquaplanet and Held & Suarez setup to force large-scale stationary waves, reproducing the south-west to north-east tilts in the Northern Hemisphere storm tracks (bottom left panel in Fig. 1). This setup has helped me elucidate the differences between the zonally homogeneous and zonally inhomogeneous atmospheres, where the planetary scale (stationary) waves and their interplay with the synoptic eddies (cyclones) become increasingly important for the mid-latitude storm track dynamics and variability on different temporal and spatial scales.

Even further complexity can be achieved by coupling atmospheric models to the dynamic ocean and/or land and ice models (coupled atmosphere-ocean or atmosphere only GCMs, in Fig. 1), all of which bring the model closer to reality. However, interpreting results from such complex models is very difficult without having first studied the hierarchy of models as too many processes are acting simultaneously in such fully coupled models.  Further insights can also be gained by improving the theoretical (mathematical) understanding of the atmospheric processes by using a similar hierarchical approach [see e.g. Boljka and Shepherd (2018)].


Boljka, L. and T.G. Shepherd, 2018: A multiscale asymptotic theory of extratropical wave–mean flow interaction. J. Atmos. Sci., 75, 1833–1852, .

Boljka, L., T.G. Shepherd, and M. Blackburn, 2018: On the boupling between barotropic and baroclinic modes of extratropical atmospheric variability. J. Atmos. Sci., 75, 1853–1871, .

Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Am. Meteorol. Soc., 86, 1609 – 1614.

Held, I. M. and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825–1830.

Jeevanjee, N., Hassanzadeh, P., Hill, S., Sheshadri, A., 2017: A perspective on climate model hierarchies. JAMES9, 1760-1771.

Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: the proposal. Atmosph. Sci. Lett., 1, 101–107.

Polvani, L. M., A. C. Clement, B. Medeiros, J. J. Benedict, and I. R. Simpson (2017), When less is more: Opening the door to simpler climate models. EOS, 98.

Shaw, T. A., M. Baldwin, E. A. Barnes, R. Caballero, C. I. Garfinkel, Y-T. Hwang, C. Li, P. A. O’Gorman, G. Riviere, I R. Simpson, and A. Voigt, 2016: Storm track processes and the opposing influences of climate change. Nature Geoscience, 9, 656–664.

Vallis, G. K., Colyer, G., Geen, R., Gerber, E., Jucker, M., Maher, P., Paterson, A., Pietschnig, M., Penn, J., and Thomson, S. I., 2018: Isca, v1.0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geosci. Model Dev., 11, 843-859.

Oceans in Weather and Climate Course 2018


Between the 11th-16th March myself and four other PhDs and post docs attended the Ocean in Weather and Climate (OiWC) course at the Met Office, Exeter. This NERC advanced training course was aimed at PhDs, postdocs and beyond. It provided a great opportunity to spend a week meeting other Oceanography researchers at varying stages of their career, and to expand your understanding of the oceans role in climate beyond the scope of your own work.

The week kicked off with an ice breaker where we had do some ‘Scientific speed dating’, chatting to other participants about: Where are you from? What do you work on? What is your main hobby? What is the biggest question in your field of research? This set the tone for a very interactive week full of interesting discussions between all attendees and speakers alike. Course participants were accommodated at The Globe Inn situated in Topsham, a cute village-sized town full of pastel-coloured houses, cosy pubs, art galleries, and beautiful riverside walks to stretch your legs in the evenings.

The days consisted of four 1.5 hour sessions, split up by caffeine and biscuit breaks to recharge before the next session.

Topics covered in the lecture-style talks included…

  • Dynamical Theory
  • Modelling the Ocean
  • Observations
  • Ocean-atmosphere coupling
  • Air-sea fluxes
  • High Resolution Ocean modelling in coupled forecast systems
  • The Meridional Overturning Circulation
  • The Southern Ocean in climate and climatic change
  • Climate variability on diurnal, seasonal, annual, inter-annual, decadal timescales
  • Climate extremes
  • Climate sensitivity, heat uptake and sea level.
A recurring figure of the week…. taken from Helene Hewitt’s talk on high resolution ocean modelling showing ocean surface currents from HadGEM3-based global coupled models at different resolutions (eddy resolving, eddy permitting and eddy parameterised).


All the talks were very interesting and were followed by some stimulating discussion. Each session provided an overview of each topic and an indication of the current research questions in each area at the moment.

In the post lunch session, there were group practical sessions. These explored observational ARGO float data and model output. The practicals, written in iPython notebooks, were designed to let us play with some data, giving us a series of questions to trigger group discussions to deepen understanding of topics covered that morning.

The course also included some ‘softer’ evening talks, giving research career advice in a more informal manner. Most evenings were spent exploring the lovely riverside walks and restaurants/pubs of Topsham. The final evening was spent all together at the Cosy Club in Exeter, rounding off a very interesting and enjoyable week!

Baroclinic and Barotropic Annular Modes of Variability


Modes of variability are climatological features that have global effects on regional climate and weather. They are identified through spatial structures and the timeseries associated with them (so-called EOF/PC analysis, which finds the largest variability of a given atmospheric field). Examples of modes of variability include El Niño Southern Oscillation, Madden-Julian Oscillation, North Atlantic Oscillation, Annular modes, etc. The latter are named after the “annulus” (a region bounded by two concentric circles) as they occur in the Earth’s midlatitudes (a band of atmosphere bounded by the polar and tropical regions, Fig. 1), and are the most important modes of midlatitude variability, generally representing 20-30% of the variability in a field.

Figure 1: Southern Hemisphere midlatitudes (red concentric circles) as annulus, region where annular modes have the largest impacts. Source.

We know two types of annular modes: baroclinic (based on eddy kinetic energy, a proxy for eddy activity and an indicator of storm-track intensity) and barotropic (based on zonal mean zonal wind, representing the north-south shifts of the jet stream) (Fig. 2). The latter are usually referred to as Southern (SAM or Antarctic Oscillation) or Northern (NAM or Arctic Oscillation) Annular Mode (depending on the hemisphere), have generally quasi-barotropic (uniform) vertical structure, and impact the temperature variations, sea-ice distribution, and storm paths in both hemispheres with timescales of about 10 days. The former are referred to as BAM (baroclinic annular mode) and exhibit strong vertical structure associated with strong vertical wind shear (baroclinicity), and their impacts are yet to be determined (e.g. Thompson and Barnes 2014, Marshall et al. 2017). These two modes of variability are linked to the key processes of the midlatitude tropospheric dynamics that are involved in the growth (baroclinic processes) and decay (barotropic processes) of midlatitude storms. The growth stage of the midlatitude storms is conventionally associated with increase in eddy kinetic energy (EKE) and the decay stage with decrease in EKE.

Figure 2: Barotropic annular mode (right), based on zonal wind (contours), associated with eddy momentum flux (shading); Baroclinic annular mode (left), based on eddy kinetic energy (contours), associated with eddy heat flux (shading). Source: Thompson and Woodworth (2014).

However, recent observational studies (e.g. Thompson and Woodworth 2014) have suggested decoupling of baroclinic and barotropic components of atmospheric variability in the Southern Hemisphere (i.e. no correlation between the BAM and SAM) and a simpler formulation of the EKE budget that only depends on eddy heat fluxes and BAM (Thompson et al. 2017). Using cross-spectrum analysis, we empirically test the validity of the suggested relationship between EKE and heat flux at different timescales (Boljka et al. 2018). Two different relationships are identified in Fig. 3: 1) a regime where EKE and eddy heat flux relationship holds well (periods longer than 10 days; intermediate timescale); and 2) a regime where this relationship breaks down (periods shorter than 10 days; synoptic timescale). For the relationship to hold (by construction), the imaginary part of the cross-spectrum must follow the angular frequency line and the real part must be constant. This is only true at the intermediate timescales. Hence, the suggested decoupling of baroclinic and barotropic components found in Thompson and Woodworth (2014) only works at intermediate timescales. This is consistent with our theoretical model (Boljka and Shepherd 2018), which predicts decoupling under synoptic temporal and spatial averaging. At synoptic timescales, processes such as barotropic momentum fluxes (closely related to the latitudinal shifts in the jet stream) contribute to the variability in EKE. This is consistent with the dynamics of storms that occur on timescales shorter than 10 days (e.g. Simmons and Hoskins 1978). This is further discussed in Boljka et al. (2018).

Figure 3: Imaginary (black solid line) and Real (grey solid line) parts of cross-spectrum between EKE and eddy heat flux. Black dashed line shows the angular frequency (if the tested relationship holds, the imaginary part of cross-spectrum follows this line), the red line distinguishes between the two frequency regimes discussed in text. Source: Boljka et al. (2018).


Boljka, L., and T. G. Shepherd, 2018: A multiscale asymptotic theory of extratropical wave, mean-flow interaction. J. Atmos. Sci., in press.

Boljka, L., T. G. Shepherd, and M. Blackburn, 2018: On the coupling between barotropic and baroclinic modes of extratropical atmospheric variability. J. Atmos. Sci., in review.

Marshall, G. J., D. W. J. Thompson, and M. R. van den Broeke, 2017: The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett., 44, 11,580–11,589.

Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414–432.

Thompson, D. W. J., and E. A. Barnes, 2014: Periodic variability in the large-scale Southern Hemisphere atmospheric circulation. Science, 343, 641–645.

Thompson, D. W. J., B. R. Crow, and E. A. Barnes, 2017: Intraseasonal periodicity in the Southern Hemisphere circulation on regional spatial scales. J. Atmos. Sci., 74, 865–877.

Thompson, D. W. J., and J. D. Woodworth, 2014: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 1480–1493.

Climate model systematic biases in the Maritime Continent


The Maritime Continent commonly refers to the groups of islands of Indonesia, Borneo, New Guinea and the surrounding seas in the literature. My study area covers the Maritime Continent domain from 20°S to 20°N and 80°E to 160°E as shown in Figure 1. This includes Indonesia, Malaysia, Brunei, Singapore, Philippines, Papua New Guinea, Solomon islands, northern Australia and parts of mainland Southeast Asia including Thailand, Laos, Cambodia, Vietnam and Myanmar.

Figure 1: JJA precipitation (mm/day) and 850 hPa wind (m s−1) for (a) GPCP and ERA-interim, (b) MMM biases and (c)–(j) AMIP biases for 1979–2008 over the Maritime Continent region (20°S–20ºN, 80°E–160ºE). Third panel shows the Maritime Continent domain and land-sea mask

The ability of climate model to simulate the mean climate and climate variability over the Maritime Continent remains a modelling challenge (Jourdain et al. 2013). Our study examines the fidelity of Coupled Model Intercomparison Project phase 5 (CMIP5) models at simulating mean climate over the Maritime Continent. We find that there is a considerable spread in the performance of the Atmospheric Model Intercomparison Project (AMIP) models in reproducing the seasonal mean climate and annual cycle over the Maritime Continent region. The multi-model mean (MMM) (Figure 1b) JJA precipitation and 850hPa wind biases with respect to observations (Figure 1a) are small compared to individual model biases (Figure 1c-j) over the Maritime Continent. Figure 1 shows only a subset of Fig. 2 from Toh et al. (2017), for the full figure and paper please click here.

We also investigate the model characteristics that may be potential sources of bias. We find that AMIP model performance is largely unrelated to model horizontal resolution. Instead, a model’s local Maritime Continent biases are somewhat related to its biases in the local Hadley circulation and global monsoon.

Figure 2: Latitude-time plot of precipitation zonally averaged between 80°E and 160°E for (a) GPCP, (b) Cluster I and (c) Cluster II. White dashed line shows the position of the maximum precipitation each month. Precipitation biases with respect to GPCP for (d) Cluster I and (e) Cluster II.

To characterize model systematic biases in the AMIP runs and determine if these biases are related to common factors elsewhere in the tropics, we performed cluster analysis on Maritime Continent annual cycle precipitation. Our analysis resulted in two distinct clusters. Cluster I (Figure 2b,d) is able to reproduce the observed seasonal migration of Maritime Continent precipitation, but it overestimates the precipitation, especially during the JJA and SON seasons. Cluster II (Figure 2c,e) simulate weaker seasonal migration of Intertropical Convergence Zone (ITCZ) than observed, and the maximum rainfall position stays closer to the equator throughout the year. Tropics-wide properties of clusters also demonstrate a connection between errors at regional scale of the Maritime Continent and errors at large scale circulation and global monsoon.

On the other hand, comparison with coupled models showed that air-sea coupling yielded complex impacts on Maritime Continent precipitation biases. One of the outstanding problems in the coupled CMIP5 models is the sea surface temperature (SST) biases in tropical ocean basins. Our study highlighted central Pacific and western Indian Oceans as the key regions which exhibit the most surface temperature correlation with Maritime Continent mean state precipitation in the coupled CMIP5 models. Future work will investigate the impact of SST perturbations in these two regions on Maritime Continent precipitation using Atmospheric General Circulation Model (AGCM) sensitivity experiments.




Jourdain N.C., Gupta A.S., Taschetto A.S., Ummenhofer C.C., Moise A.F., Ashok K. (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Climate Dynamics. 41(11–12):3073–3102

Toh, Y.Y., Turner, A.G., Johnson, S.J., & Holloway, C.E. (2017). Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble. Climate Dynamics. doi: 10.1007/s00382-017-3641-x

New Forecast Model Provides First Global Scale Seasonal River Flow Forecasts


Over the past ~decade, extended-range forecasts of river flow have begun to emerge around the globe, combining meteorological forecasts with hydrological models to provide seasonal hydro-meteorological outlooks. Seasonal forecasts of river flow could be useful in providing early indications of potential floods and droughts; information that could be of benefit for disaster risk reduction, resilience and humanitarian aid, alongside applications in agriculture and water resource management.

While seasonal river flow forecasting systems exist for some regions around the world, such as the U.S., Australia, Africa and Europe, the forecasts are not always accessible, and forecasts in other regions and at the global scale are few and far between.  In order to gain a global overview of the upcoming hydrological situation, other information tends to be used – for example historical probabilities based on past conditions, or seasonal forecasts of precipitation. However, precipitation forecasts may not be the best indicator of floodiness, as the link between precipitation and floodiness is non-linear. A recent paper by Coughlan-de-Perez et al (2017), “should seasonal rainfall forecasts be used for flood preparedness?”, states:

“Ultimately, the most informative forecasts of flood hazard at the seasonal scale are streamflow forecasts using hydrological models calibrated for individual river basins. While this is more computationally and resource intensive, better forecasts of seasonal flood risk could be of immense use to the disaster preparedness community.”

twitter_screenshotOver the past months, researchers in the Water@Reading* research group have been working with the European Centre for Medium-Range Weather Forecasts (ECMWF), to set up a new global scale hydro-meteorological seasonal forecasting system. Last week, on 10th November 2017, the new forecasting system was officially launched as an addition to the Global Flood Awareness System (GloFAS). GloFAS is co-developed by ECMWF and the European Commission’s Joint Research Centre (JRC), as part of the Copernicus Emergency Management Services, and provides flood forecasts for the entire globe up to 30 days in advance. Now, GloFAS also provides seasonal river flow outlooks for the global river network, out to 4 months ahead – meaning that for the first time, operational seasonal river flow forecasts exist at the global scale – providing globally consistent forecasts, and forecasts for countries and regions where no other forecasts are available.

The new seasonal outlook is produced by forcing the Lisflood hydrological river routing model with surface and sub-surface runoff from SEAS5, the latest version of ECMWF’s seasonal forecasting system, (also launched last week), which consists of 51 ensemble members at ~35km horizontal resolution. Lisflood simulates the groundwater and routing processes, producing a probabilistic forecast of river flow at 0.1o horizontal resolution (~10km, the resolution of Lisflood) out to four months, initialised using the latest ERA-5 model reanalysis.

The seasonal outlook is displayed as three new layers in the GloFAS web interface, which is publicly (and freely) available at The first of these gives a global overview of the maximum probability of unusually high or low river flow (defined as flow exceeding the 80th or falling below the 20th percentile of the model climatology), during the 4-month forecast horizon, in each of the 306 major world river basins used in GloFAS-Seasonal.

The new GloFAS Seasonal Outlook Basin Overview and River Network Layers.

The second layer provides further sub-basin-scale detail, by displaying the global river network (all pixels with an upstream area >1500km2), again coloured according to the maximum probability of unusually high or low river flow during the 4-month forecast horizon. In the third layer, reporting points with global coverage are displayed, where more forecast information is available. At these points, an ensemble hydrograph is provided showing the 4-month forecast of river flow, with thresholds for comparison of the forecast to typical or extreme conditions based on the model climatology. Also displayed is a persistence diagram showing the weekly probability of exceedance for the current and previous three forecasts.

The new GloFAS Seasonal Outlook showing the river network and reporting points providing hydrographs and persistence diagrams.

Over the coming months, an evaluation of the system will be completed – for now, users are advised to evaluate the forecasts for their particular application. We welcome any feedback on the forecast visualisations and skill – feel free to contact me at the email address below!

To find out more, you can see the University’s press release here, further information on SEAS5 here, and the user information on the seasonal outlook GloFAS layers here.

*Water@Reading is “a vibrant cross-faculty centre of research excellence at the University of Reading, delivering world class knowledge in water science, policy and societal impacts for the UK and internationally.”

Full list of collaborators: 

Rebecca Emerton1,2, Ervin Zsoter1,2, Louise Arnal1,2, Prof. Hannah Cloke1, Dr. Liz Stephens1, Dr. Florian Pappenberger2, Prof. Christel Prudhomme2, Dr Peter Salamon3, Davide Muraro3, Gabriele Mantovani3

1 University of Reading
3 European Commission JRC


Sea ice is complicated, but do sea ice models need to be?


Sea ice is complex…

When sea water freezes it forms sea ice, a composite of ice and brine. Sea ice exhibits varying structural, thermodynamic and mechanical properties across a range of length- and time-scales. It can be subcategorised into numerous different types of sea ice depending on where is grows and how old it is.



Different sea ice growth processes and types 1.

However, climate models do not simulate the evolution of floes (they model floes as cylindrical) or the floe size distribution, which has implications for ice melt rates and exchange of heat with the atmosphere and ocean. Sea ice also hosts algae and small organisms within brine channels in the ice, which can be important for nutrient cycles. This is a developing area of earth system modelling.

Schematic of life within brine channels in sea ice 2.

How much complexity do global climate models need to sufficiently model the interactions of sea ice with the ocean and atmosphere?
The representation of sea ice in global climate models is actually very simple, with minimal sea ice types and thickness categories. The main important feature of sea ice for global climate models is its albedo, which is much greater than that of open water, making it important for the surface energy balance. So, it is important to get the correct area of sea ice. Global climate models need sea ice:

  • to get the correct heat exchange with the atmosphere and ocean
  • to get a realistic overturning circulation in the ocean.
  • because salt release during sea ice growth is important for the ocean salinity structure, and therefore important to get the correct amount of sea in/near deep water formation sites.
  • sea ice is not important for sea level projections.

So, do the complex features of sea ice matter, or are simple parameterisations sufficient?

Sea_ice_Drawing_General_features.svg Schematic showing some dynamic features of sea ice 3.

Which leads to a lot more questions…

  • Where does the balance between sufficient complexity and computational cost lie?
  • Does adding extra model complexity actually make it harder to understand what the model is doing and therefore to interpret the results?
  • Do climate models need any further improvements to sea ice in order to better simulate global climate? There is still large uncertainty surrounding other climate model components, such as clouds and ocean eddies, which are believed to explain a lot of the discrepancy between models and observations, particularly in the Southern Ocean.

A lot of these questions depend on the scientific question that is being asked. And the question is not necessarily always ‘how is global climate going to change in the future’. Sea ice is fascinating because of its complexity, and there are still many interesting questions to investigate, hopefully before it all melts!

 Images clockwise from top left: grease ice 4, pancake ice 5, surface melt ponds 6, ice floes 7

The Future Developments in Climate Sea Ice Modelling Workshop

This blog stems from a one day workshop I attended on ‘Future developments in climate sea ice modelling’ at the Isaac Newton Centre as part of a four month programme on the ‘Mathematics of Sea Ice Phenomena’. The format of the day was that three different strands of sea ice researchers gave 40 min talks giving their strand’s point of view of current sea ice developments and what the focus should be for sea ice modelers, each followed by 40 mins of open discussion with the audience.

The three (very good!) talks were:

  1. Dirk Notz: What do climate models need sea ice for? A top-down, system level view of what sea ice models should produce from the perspective of a climate modeller.
  2. Cecilia Bitz: What sea ice physics is missing from models? A bottom-up view of what is missing from current sea ice models from the perspective of a sea ice scientist.
  3. Elizabeth Hunke: What modelling approaches can be used to address the complexity of sea ice and the needs of climate models?