AGU Fall Meeting – Posters and Protests

Email: r.e.emerton@pgr.reading.ac.uk

From 12th to 16th December 2016, the annual American Geophysical Union (AGU) Fall Meeting took place at the Moscone Centre in San Francisco. AGU remains the largest Earth and Space Science conference in the world with more than 25,000 scientists.

agu
Overlooking the Poster Hall in Moscone South

At the 2016 Fall Meeting, I was one of around 8000 students who arrived in San Francisco to present one of the 15,000 posters that would be displayed over the course of the week. While I knew that AGU is one of the largest Earth science conferences, and had indeed spent hours on the plane fine-tuning my schedule to choose which of the ~200 hydrology sessions (let alone the meteorology sessions also related to my work) I would attend, the scope and diversity of the research presented throughout the week really sunk in when I stood on the mezzanine overlooking the poster hall on the first day of the conference.

I was lucky enough to be awarded an AGU student travel grant in order to present my latest PhD research that I’ve been working on at the University of Reading, in collaboration with the European Centre for Medium-Range Weather Forecasts (ECMWF), and funded by NERC as part of the SCENARIO Doctoral Training Partnership. My work maps the historical probability of increased (or decreased) flood hazard across the globe during ENSO (El Niño and La Niña) events, using the first 20th Century ensemble river flow reanalysis, created at ECMWF as part of this work. But more on that another time!

blogpostscreenshotUnlike other conferences I’d presented at, the poster sessions at AGU span half a day – while you are only expected to be there to discuss the work for two hours, it’s inevitable that you get caught up in discussion and I saw many presenters (myself included) who stuck by their poster for the full 4.5 hours! I thoroughly enjoyed my poster session, where several familiar faces dropped by for an update on my work, and others stopped to pose new questions and make a few suggestions for improvements to my maps (wait, why didn’t I think of that?!). As a student presenter, I could also register for the Outstanding Student Poster Award – which means that my poster was anonymously judged, and I will soon be receiving  feedback on my poster and presentation – an opportunity I was excited about to make sure I continue to improve the way I communicate my research.

For me, some of the sessions that were highlights of the conference included  ‘Global Floods: Forecasting, Monitoring, Risk Assessment and Socioeconomic Response‘, ‘Large-scale Climate Variability and its Impact on Hydrological Systems, Water Resources and Population‘, ‘Forecasting Hydrology at Continental Scale‘, ‘Transforming Hydrologic Prediction and Decision Making: Uncertainty’ and ‘ENSO Dynamics, Observations and Predictability in light of the 2015-2016 El Niño Event‘. With such a range of science being presented, there’s also plenty of opportunity (well, so long as you haven’t double- or triple-booked sessions in your schedule already!) to listen to talks outside of your own field – which is how I ended up in an 8am talk on operational earthquake forecasting and early warning. It was brilliant to learn about forecasting natural hazards outside of hydrology and meteorology!

There was also the social aspect that’s a big part of any conference – networking, networking and more networking! While it can be daunting, particularly at a conference of this size, to find and introduce yourself to scientists in your field whose work you’ve read but you’ve never met, I was pleased to first bump into some friendly faces who in turn introduced me to the new faces. Plus, it’s an AGU tradition that ‘AGU beer’ is served at 3.30pm sharp and the conference centre fills with groups of friends and colleagues in heated debates and discussions about anything from volcanoes to Jupiter’s magnetosphere.

It was impossible not to notice, however, the many more politically-themed conversations than would normally be overheard at such an event, as a result of uncertainty about the future of science in light of the recent US presidential election. While I was in the middle of research discussions at my poster, a ‘Stand up for Science‘ rally took place a few blocks away from the conference centre, where scientists donned lab coats and held signs – “stand up for science”, “ice has no agenda – it just melts” – protesting to raise awareness of the challenges, and to support science. You can read the Guardian article here.

blogscreenshot2

All in all, AGU was a brilliant chance to present and discuss part of my research that I had just finished – it was certainly overwhelming and tough to choose which sessions to stop by (which meant I missed one or two presentations that sounded great), but I would recommend it for showcasing your work (and receiving feedback via the OSPA) and meeting scientists in your field that you wouldn’t normally bump into at conferences in Europe, especially if you can apply for one of AGU’s travel grants to help cover the costs of getting there.

P.S. You can watch presentations from the AGU Fall Meeting 2016 on the website.

Of course, I couldn’t fly all the way out to California and not find time to explore San Francisco a little.

 

 

The effect of local topography on severe tropical convective rainfall development.

Email: m.f.f.b.mohdnor@pgr.reading.ac.uk

The occurrence of severe convective rainfall is common over the tropical rainforest region. While the basic mechanism of the development of severe convective rainfall over the tropics is well understood in previous studies, the effect of local topography may yield a unique development process.

One part of my PhD project is to look at how local topography modifies severe rainfall events over the western Peninsular Malaysia. This was examined via a case study of severe rainfall that took place on 2nd May 2012. On that day, heavy rainfall caused flash floods and landslides over Klang Valley (red box in Fig. 1). Although the total rainfall on the 2nd May was above the Apr-May average, it was not extremely high.

fig1_geography_malaysia

Fig. 1. The study area, specifically over the western Peninsular Malaysia. The red box is Klang valley area.

Looking at observational data was not enough to understand the processes involved in the development of severe rainfall event on 2nd May 2012 and therefore a simulation study was conducted using the UK Met Office Unified Model (1.5km horizontal resolution).

One theory which could explain  the rainfall event on 2nd May 2012 is the influence of a series of rainfall events that developed earlier. There were rainfall events over the Peninsular Malaysia and Sumatra Island in the early evening of 1st May 2012 along the Titiwangsa mountains (Peninsular Malaysia) and Barisan Mountains (Sumatra Island). These rainfall events influenced the development of rainfall over the Malacca Strait overnight. The rainfall event over the strait strengthened by the morning of 2nd May. In the afternoon of 2nd May, the western peninsula had the right atmospheric conditions to develop convective rainfall, and the rainfall over the strait influenced the intensification of rainfall over the western peninsula. Thus, we believe that the local topography has a large impact on the development of the 2nd May rainfall event.

So, how do we test the hypothesis? One way is to perform sensitivity experiments. Four sensitivity experiments were conducted, modifying the orography of both the peninsula and Sumatra, and removing Sumatra altogether (Fig. 2).

fig2_experiments_all

Fig. 2. Sensitivity experiments on the local orography and Sumatra Island. Control run on the first panel, flatPM (flat peninsula to sea level), flatSI (flat Sumatra), flatALL(both peninsula and Sumatra are flat), and noSI (Sumatra is removed)

The results show that orography influenced and modified the development of late evening rainfall over both landmasses on both days. On 2nd May, total rainfall in the experiments are as follows:
1. flatPM : Klang valley received less rainfall than control,
2. flatSI : Klang valley received less rainfall than control but more than flatPM,
3. flatALL : Klang valley received more rainfall than control, flatPM and flatSI experiments,
4. noSI : Klang valley received triple the amount of rainfall of the control and other experiments.
These results hint the complex relationship between local topography and rainfall. Moreover, both the peninsula and Sumatra are important for the development of the morning rainfall over the Malacca Strait, regardless of the orographic variability.

Whilst looking at one case study is not enough to draw a general conclusion, this will definitely be a step forward on broadening the information that we already have. A more robust conclusion would require further studies to be taken.

(This PhD project is supervised by Pete Inness and Christopher Holloway, and funded by MARA Malaysia).