Cloud-Radiation Interactions and Their Contributions to Convective Self-Aggregation 

Kieran Pope – k.n.pope@pgr.reading.ac.uk

Convective self-aggregation is the process by which initially randomly scattered convection becomes spontaneously clustered in space despite uniform initial conditions. This process was first identified in numerical models, however it is relevant to real world convection (Holloway et al., 2017). Tropical weather is dominated by convection, and the degree of convective aggregation has important consequences for weather and climate. A more organised regime is associated with reduced cloudiness, increased longwave emission to space (Bretherton et al., 2005), and a higher frequency of long-lasting extreme precipitation events (Bao and Sherwood, 2019).

Because of its relevance to weather and climate, self-aggregation has been the focus of many recent studies. However, there is still much debate as to the processes that cause aggregation. There is great variability in the rate and degree of aggregation between models, and there remains uncertainty as to how aggregation is affected by climate change (Wing et al., 2020). Previous studies have shown that feedbacks between convection and shortwave & longwave radiation are key drivers and maintainers of aggregation (e.g. Wing & Cronin 2016), and that interactive radiation in models is essential for aggregation to occur (Muller & Bony 2015).

This blog summarises results from the first paper from my PhD (Pope et al., 2021), where we develop and use a framework to analyse how radiative interactions with different cloud types contribute to aggregation. We analyse self-aggregation within a set of three idealised simulations of the UK Met Office Unified Model (UM). The simulations are configured in radiative-convective equilibrium over three fixed sea surface temperatures (SSTs) of 295, 300 and 305 K. They are convection permitting models that are 432 × 6048 km2 in size with a 3 km horizontal grid spacing. The simulations neglect the earth’s rotation, so they approximately represent convection over tropical oceans within a warming climate.

Our analysis framework is based on that used in Wing and Emanuel (2014) which uses the variance of vertically-integrated frozen moist static energy (FMSE) as a measure of aggregation. FMSE is a measure of the total energy an air parcel has if all the water (vapour and frozen) was converted to liquid, neglecting its velocity. Variations in vertically-integrated FMSE come from perturbations in temperature and humidity. As aggregation increases, moist regions get moister and dry regions get drier, so the variance of vertically-integrated FMSE increases.

The problem with using FMSE variance as an aggregation metric is that it is highly sensitive to SST. A warmer atmosphere can hold more water vapour via the Clausius-Clapeyron relationship. This means there is a greater difference in FMSE between the moist and dry regions for higher-SST simulations, so the variance of FMSE is typically much greater for higher SSTs. To account for this problem, we normalise FMSE between hypothetical upper and lower limits which are functions of SST. This gives a value of normalised FMSE between 0 and 1.

Wing and Emanuel (2014) derive a budget equation for the rate of change of FMSE variance which shows how different processes contribute to aggregation. By rederiving their equation for normalised FMSE , we get:

\displaystyle \frac{1}{2}\frac{\partial\widehat{h'}_n^2}{\partial t} = \widehat{h'}_nLW'_n + \widehat{h'}_nSW'_n + \widehat{h'}_nSEF'_n - \widehat{h'}_n\nabla_h\cdot\widehat{\textbf{u}h_n}

where \widehat{h} is vertically-integrated FMSE, LW and SW are the net atmospheric column longwave and shortwave heating rates, SEF is the surface enthalpy flux, made up of the surface latent and sensible heat fluxes, and \nabla h \cdot \widehat{\textbf{u}h} is the horizontal divergence of the \widehat{h} flux. Primes (') indicate local anomalies from the instantaneous domain mean. The subscript (_n) denotes a normalised variable which is the original variable divided by the difference between the hypothetical upper and lower limits of \widehat{h}. The equation shows that the rate of change of \widehat{h'}_n variance (left hand side term) is driven by interactions between \widehat{h}_n anomalies and anomalies in normalised net longwave heating, shortwave heating, surface fluxes and advection.

We use the variance of \widehat{h}_n as our aggregation metric. Hovmöller plots of \widehat{h}_n are shown in Figure 1 for each of our SSTs. In these plots, \widehat{h}_n is averaged along the short axis of our domains. The plots show how initially randomly-distributed convection organises into bands which expand until the point where there are 4 to 5 quasi-stationary bands of moist convective regions separated by dry subsiding regions. This demonstrates that once our domains become fully-aggregated, the degree of aggregation appears similar. Figure 2a shows time series of each of the variance of \widehat{h}_n, and shows that the variance of non-normalised \widehat{h}_n is ~4 times greater for our 305 K simulations compared to our 295 K simulation. Figure 2b shows time series of the variance of \widehat{h}_n. From this, we can see the convection aggregates faster as SST increases, yet the degree of aggregation remains similar via this metric once the convection is fully aggregated. Values of \widehat{h}_n variance around 10-4 or lower correspond to randomly scattered convection, whereas values greater that 10-3 are associated with strongly aggregated convection.

Figure 3: Maps of (a) cloud condensed water path, (b) vertically-integrated FMSE anomaly, (c) longwave heating anomaly, (d) shortwave heating anomaly. Snapshots at day 100 of the 300 K simulation.

To understand the processes contributing to aggregation, we have to look to Equation 1. We mainly focus on the two radiative terms on the right hand side. The terms show that regions in which the radiative anomalies and the \widehat{h}_n anomalies have the same sign contribute to aggregation. We can start to get an intuitive understanding of this concept by looking at maps of these variables. Figure 3b-d show maps of \widehat{h'}_n, LW' and SW'. We can see SW' and \widehat{h'} are closely correlated since SW' is mainly determined by the shortwave absorption by water vapour. Clouds have little effect on the shortwave heating rates, with ~90% of the shortwave heating rate in cloudy regions being due to absorption by water vapour. LW' is closely linked to cloud condensed water path (Figure 3a). This is because the majority of our clouds are high-topped clouds which, due to their cold cloud tops, are able to prevent longwave radiation escaping to space, so they are associated with positive longwave heating anomalies.

The sensitivity of the budget terms to both aggregation and SST can be seen in Figure 4. This figure is made by creating 50 bins of \widehat{h}_n variance and then averaging the budget terms in space and time for each bin and for each SST. Where the terms are positive, they are helping to increase aggregation. Where they are negative, the terms are opposing aggregation. The terms tend to increase in magnitude since every term has \widehat{h'}_n as a factor, which increases with aggregation by definition.

Figure 4: Terms in Equation 1 vs normalised FMSE variance for each SST

In general, we find the longwave term is the dominant driver of aggregation, being insensitive to SST during the growth phase of aggregation. Once the aggregation is mature, the longwave term remains the dominant maintainer of aggregation, however its contribution to aggregation maintenance decreases with SST. The shortwave term is initially small at early times but becomes a key maintainer of aggregation within highly-aggregated environments. This is because humidity variations are initially small, so there is little variation in shortwave heating. Once the convection is aggregated, moist regions are very moist and dry regions are very dry, so there is a large difference in shortwave heating between moist and dry regions. The variations in shortwave heating remain very similar with SST, meaning shortwave heating anomalies contribute the same amount to non-normalised \widehat{h} variance. Therefore, shortwave heating contributes less to aggregation at higher SSTs because they contribute to a smaller fraction of \widehat{h} anomalies. The radiative terms are balanced by the surface flux term (negative because there is greater evaporation in dry regions) and the advection term (negative because circulations tend to smooth out \widehat{h'}_n gradients). The decrease in the magnitude of the radiative terms with SST is balanced by the surface flux and advection terms becoming more positive with SST.

To understand the behaviour of the longwave term, we define different cloud types based on the vertical profile of cloud, assigning one cloud type per grid box in a similar way to Hill et al. (2018). We define a lower and upper level pressure threshold, assigning cloud below the lower threshold to a “Low” category, cloud above the upper threshold to a “High” category, and cloud in between to a “Mid” category. If cloud occurs in more than one of these layers, then it is assigned to a combined category. In total, there are eight cloud types: Clear, Low, Mid, Mid & Low, High, High & Low, High & Mid, and Deep. We can then find each cloud type’s contribution to the longwave term by multiplying the cloud’s mean [Equation] covariance by its domain fraction.

To see how the cloud type contributions change with aggregation, we define a Growth phase and Mature phase of aggregation. The Growth phase has \widehat{h}_n variance between 3\times10^{-4} and 4\times10^{-4} and the Mature phase has \widehat{h} variance between 1.5\times10^{-3} and 2\times 10^{-3}. The contribution of longwave interactions with each cloud type to aggregation during these two phases is shown in Figure 5a, with their mean LW'\times\widehat{h'} covariance and fraction shown in Figures 5b & c.

Figure 5: Mean (a) contribution to the longwave term in Equation 1, (b) normalised longwave-FMSE covariance, (c) cloud fraction for the Growth phase (dots) and Mature phase (open circles). Data points for each category are in order of SST increasing to the right.

We find that longwave interactions with high-topped clouds and clear regions drive aggregation during the Growth phase (Figure 5a). This is because high clouds are abundant, have positive longwave heating anomalies and occur in moist, high \widehat{h} environments. The clear regions are the most abundant category, have typically negative longwave heating anomalies and tend to occur in low \widehat{h} regions, so their LW'\times\widehat{h'} covariance is positive. During the Growth phase, there is little SST sensitivity within each category. During the Mature phase, longwave interactions with high-topped cloud remain the main maintainer of aggregation however their contribution decreases with SST. This sensitivity is mainly because there is a greater decrease in high-topped cloud fraction with aggregation as SST increases. This also has consequences for the LW'\times\widehat{h'} covariance of the clear regions. As high-topped cloud fraction reduces, the domain-mean longwave cooling increases. This makes the radiative cooling of the clear regions less anomalous, resulting in an increasingly negative LW'\times\widehat{h'} covariance during the Mature phase as SST increases.

There is great variability in the degrees of aggregation within numerical models, which has important consequences for weather and climate modelling (Wing et al. 2020). With cloud-radiation interactions being crucial for aggregation, understanding how these interactions vary between models may help to explain the differences in aggregation. This study provides a framework by which a comparison of cloud-radiation interactions and their contributions to convective self-aggregation between models and SSTs can be achieved.

Page Break 

REFERENCES 

Bao, J., & Sherwood, S. C. (2019). The role of convective self-aggregation in extreme instantaneous versus daily precipitation. Journal of Advances in Modeling Earth Systems11(1), 19– 33. https://doi.org/10.1029/2018MS001503 

Bretherton, C. S., Blossey, P. N., & Khairoutdinov, M. (2005). An energy-balance analysis of deep convective self-aggregation above uniform SST. Journal of the Atmospheric Sciences62(12), 4273– 4292. https://doi.org/10.1175/JAS3614.1 

Hill, P. G., Allan, R. P., Chiu, J. C., Bodas-Salcedo, A., & Knippertz, P. (2018). Quantifying the contribution of different cloud types to the radiation budget in Southern West Africa. Journal of Climate31(13), 5273– 5291. https://doi.org/10.1175/JCLI-D-17-0586.1 

Holloway, C. E., Wing, A. A., Bony, S., Muller, C., Masunaga, H., L’Ecuyer, T. S., & Zuidema, P. (2017). Observing convective aggregation. Surveys in Geophysics38(6), 1199– 1236. https://doi.org/10.1007/s10712-017-9419-1 

Muller, C., & Bony, S. (2015). What favors convective aggregation and why? Geophysical Research Letters42(13), 5626– 5634. https://doi.org/10.1002/2015GL064260 

Pope, K. N., Holloway, C. E., Jones, T. R., & Stein, T. H. M. (2021). Cloud-radiation interactions and their contributions to convective self-aggregation. Journal of Advances in Modeling Earth Systems13, e2021MS002535. https://doi.org/10.1029/2021MS002535 

Wing, A. A., & Cronin, T. W. (2016). Self-aggregation of convection in long channel geometry. Quarterly Journal of the Royal Meteorological Society142(694), 1– 15. https://doi.org/10.1002/qj.2628 

Wing, A. A., & Emanuel, K. A. (2014). Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. Journal of Advances in Modeling Earth Systems6(1), 59– 74. https://doi.org/10.1002/2013MS000269 

Wing, A. A., Stauffer, C. L., Becker, T., Reed, K. A., Ahn, M.-S., Arnold, N., & Silvers, L. (2020). Clouds and convective self-aggregation in a multi-model ensemble of radiative-convective equilibrium simulations. Journal of Advances in Modeling Earth Systems12(9), e2020MS0021380. https://doi.org/10.1029/2020MS0021380 

Do local or non-local sources of moisture contribute to extratropical cyclone precipitation?

Sophie Cuckow – s.cuckow@pgr.reading.ac.uk 

Introduction 

Transient corridors of strong horizontal water vapour transport, called atmospheric rivers have been linked to flooding over Europe and the US (Ralph et al. 2004, Lavers et al. (2011), Corringham et al. (2019)). Despite this, the relationship between atmospheric rivers and the precipitation associated with extratropical cyclones is debated in literature. It is often thought that atmospheric rivers feed moisture from the tropics directly to the cyclone where it rises to form precipitation (Ralph et al. (2004), Neiman et al. 2008)). However, this would only be the case if the cyclone propagation velocity is slower than the vapour transport, which might not occur when a cyclone is developing. Thus, arises the question, where does the moisture that produces the precipitation come from? The tropics via atmospheric rivers or from another location via a different mechanism? Understanding which moisture sources contribute to extratropical precipitation would help to improve forecasts and mitigate the risk of damage from flooding events. 

Case Study – Storm Bronagh

To investigate different moisture sources, we examined our case study, storm Bronagh, in an Earth relative and system relative framework. Storm Bronagh tracked over the UK during the 20th and 21st September 2018 and bought over 50mm of rainfall in 24 hours to parts of Wales and England. This led to flooding in mid-Wales and Sheffield (Met Office). The Earth relative framework allows us to investigate whether the storm has an associated atmospheric river. The cyclone relative framework allows us to investigate airstreams called conveyor belts, which are moving faster than the cyclone propagation velocity. To transition to this framework, we calculated the propagation velocity of the cyclone using the tracks produced by the tracking algorithm of Hodges (1995). We then subtracted the velocity from the Earth relative wind fields (European Centre for Mid-range Weather Forecasts Re-analysis 5, ERA5) to give the cyclone relative wind fields (Carlson (1980)).

Figure 1: The 300K isentropic surface on 21st September 2018 00:00UTC with the center of the storm (red cross, the isobars (white contours) and masked areas depicting where the surface intersects the ground are shown. Left hand side: The Earth relative moisture flux (streamlines) and the magnitude of the Earth relative moisture flux (filled contours). Right hand side: The system relative moisture flux (streamlines) and the magnitude of the system relative moisture flux (filled contours).

The Earth relative and system relative moisture flux (q\overline{U}) on the 300K isentropic surface for storm Bronagh on 21st September 2018 00:00UTC are shown in figure 1. In the Earth relative framework on the left-hand side of this figure, there is an atmospheric river approaching from the West as shown by the blue arrow. This suggests that the source of moisture for this storm was the tropics. However, the cyclone relative framework suggests there is in fact a local source of moisture. This can be seen on the right-hand side of figure 1 where three important airstreams can be seen: the warm conveyor belt (red), the dry intrusion (blue) and the feeder airstream (green). 

The warm conveyor belt is responsible for most of the cloud and precipitation associated with the cyclone. As shown in figure 1, it ascends ahead of the cold front and turns cyclonically to form the upper part of the cloud head, resulting in the iconic comma shape. Also shown in figure 1 is the dry intrusion which descends from behind the cold front into the centre of the cyclone. As this is a dry airflow, it creates a cloud free area between the cold frontal cloud band and the cloud head.

The feeder airstream is a low-level moist airflow that supplies moisture to the base of the warm conveyor belt where it rises. This can be seen in figure 1 where an airstream approaches from the East and splits into two branches, one of which joins the base of the warm conveyor belt. Therefore, in the cyclone relative framework, the moisture originates in the environment ahead of the cyclone rather than the tropics. Furthermore, the other branch of the feeder airstream indicates that the atmospheric river is a result of the moisture being left behind by the cyclone as it propagates. This supports the findings of Dacre et al. (2019) where the feeder airstream was identified by examining 200 of the most intense winter storms over 20 years. 

Therefore, the question arises, which cyclones have a local moisture source? Is it just the intense cyclones or do weaker ones have one too? In order to answer these questions, a diagnostic that identifies the feeder airstream has been developed thus, determining whether there is a local or non-local source of moisture.  

Identification Diagnostic

As seen in figure 1, the feeder airstream is synonymous with a saddle point where it splits into two branches. Therefore, the basis of the feeder airstream’s identification is a saddle point in the system relative moisture flux on an isentropic surface. Utilising theory from non-linear dynamics, the flow around a minimum or fixed point can be identified. Taking the Jacobian matrix of a field and Taylor expanding around a fixed-point, results in a quadratic equation which includes the determinant and trace of the field. By solving this equation and plotting the trace and determinant of the field gives insight into how each flow can be characterised (Drazin (1992)). This is shown in figure 2 where positive values of determinant of the field characterises spiral sources and sinks, whereas the negative values of determinant of the field characterises a saddle point. The determinant of a field is calculated using an equation which calculates the gradient of the field around the fixed point. Therefore, the feeder airstream can be identified by a minimum in the system relative moisture flux field coinciding with an area of negative determinant of the system relative moisture flux field.  Applying this theory to the case study, the feeder air stream for storm Bronagh was successfully identified for 21st September 2018 at 00:00UTC.

Figure 2: Poincare diagram based on Hundley (2012). This diagram describes how the flow around a fixed point in field A can be characterised using the determinant and trace of the field.

Conclusion and Future Work

In conclusion, the moisture source for the precipitation associated with storm Bronagh on 21st September 2018 00:00UTC is ahead of the environment rather than the tropics. This moisture is transported to the base of the warm conveyor belt via one branch of a low-level moist airflow called the feeder airstream. The second branch forms the atmospheric river which is a result of moisture being left behind by the cyclone as it propagates. To determine the source of moisture associated with Bronagh in an objective manner, an identification diagnostic has successfully been developed using the determinant of the system relative moisture flux field on an isentropic surface.

In order to develop the identification diagnostic further, it will be adapted to identify the feeder airstream in different stages of storm Bronagh’s evolution. This would verify whether the diagnostic is successfully identifying the feeder airstream and will give us more insight into the relative sources of moisture as the storm evolves. Future work would involve applying the identification diagnostic to a climatology of cyclones with varying intensity, genesis location and durations so that we can ascertain the dependance of the moisture sources on these parameters.

References

Carlson, T. N. (1980), ‘Airflow Through Midlatitude Cyclones and the Comma Cloud Pattern’, Monthly Weather Review

Corringham, T. W., Martin Ralph, F., Gershunov, A., Cayan, D. R., & Talbot, C. A. (2019).

Atmospheric rivers drive flood damages in the western United States. Science Advances, 5(12). https://doi.org/10.1126/sciadv.aax4631

Dacre, H. F., Martınez-Alvarado, O. & Mbengue, C. O. (2019), ‘Linking Atmospheric Rivers and Warm Conveyor Belt Airflows’, Journal of Hydrometeorology

Douglas R. Hundley. “Poincare Diagram: Classification of phase portraits in (detA, TrA) – plane.” Whitman College, WA, Fall 2012. http://people.whitman.edu/~hundledr/ courses/M244F12/M244/PoincareDiagram.jpg

Drazin, P. G. (1992), Nonlinear Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press

Hodges, K. I. (1995), ‘Feature Tracking on the Unit Sphere’, Monthly Weather Review 123(12)

Lavers, D. A., Villarini, G., Allan, R. P., Wood, E. F. & Wade, A. J. (2012), ‘The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation’, Journal of Geophysical Research Atmospheres

Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D. & Dettinger, M. D. (2008), ‘Meteorological Characteristics and Overland Precipitation Impacts of Atmospheric Rivers Affecting the West Coast of North America Based on Eight Years of SSM/I Satellite Observations’, Journal of Hydrometeorology

Met Office – “Strong Winds and Heavy Rain from Storms Ali and Bronagh” https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2018/strong-winds-and-heavy-rain-from-storms-ali-and-bronagh—met-office.pdf

Ralph, F. M., Neiman, P. J. & Wick, G. A. (2004), ‘Satellite and CALJET Aircraft Observations of Atmospheric Rivers over the Eastern North Pacific Ocean during the Winter of 1997/98’, Monthly Weather Review

Trouble in paradise: Climate change, extreme weather and wildlife conservation on a tropical island.

Joseph Taylor, NERC SCEARNIO DTP student. Zoological Society of London.

Email: J.Taylor5@pgr.reading.ac.uk

Projecting the impacts of climate change on biodiversity is important for informing

Mauritius Kestrel by Joe Taylor
Male Mauritius kestrel (Falco punctatus) in the Bambous Mountains, eastern Mauritius. Photo by Joe Taylor.

mitigation and adaptation strategies. There are many studies that project climate change impacts on biodiversity; however, changes in the occurrence of extreme weather events are often omitted, usually because of insufficient understanding of their ecological impacts. Yet, changes in the frequency and intensity of extreme weather events may pose a greater threat to ecosystems than changes in average weather regimes (Jentsch and Beierkuhnlein 2008). Island species are expected to be particularly vulnerable to climate change pressures, owing to their inherently limited distribution, population size and genetic diversity, and because of existing impacts from human activities, including habitat destruction and the introduction of non-native species (e.g. Fordham and Brook 2010).

Mauritius is an icon both of species extinction and the successful recovery of threatened species. However, the achievements made through dedicated conservation work and the investment of substantial resources may be jeopardised by future climate change. Conservation programmes in Mauritius have involved the collection of extensive data on individual animals, creating detailed longitudinal datasets. These provide the opportunity to conduct in-depth analyses into the factors that drive population trends.

My study focuses on the demographic impacts of weather conditions, including extreme events, on three globally threatened bird species that are endemic to Mauritius. I extended previous research into weather impacts on the Mauritius kestrel (Falco punctatus), and applied similar methods to the echo parakeet (Psittacula eques) and Mauritius fody (Foudia rubra). The kestrel and parakeet were both nearly lost entirely in the 1970s and 1980s respectively, having suffered severe population bottlenecks, but all three species have benefitted from successful recovery programmes. I analysed breeding success using generalised linear mixed models and analysed survival probability using capture-mark-recapture models. Established weather indices were adapted for use in this study, including indices to quantify extreme rainfall, droughts and tropical cyclone activity. Trends in weather indices at key conservation sites were also analysed.

The results for the Mauritius kestrel add to a body of evidence showing that precipitation is an important limiting factor in its demography and population dynamics. The focal population in the Bambous Mountains of eastern Mauritius occupies an area in which rainfall is increasing. This trend could have implications for the population, as my analyses provide evidence that heavy rainfall during the brood phase of nests reduces breeding success, and that prolonged spells of rain in the cyclone season negatively impact the survival of juveniles. This probably occurs through reductions in hunting efficiency, time available for hunting and prey availability, so that kestrels are unable to capture enough prey to sustain themselves and feed their young (Nicoll et al. 2003, Senapathi et al. 2011). Exposure to heavy and prolonged rainfall could also be a direct cause of mortality through hypothermia, especially for chicks if nests are flooded (Senapathi et al. 2011). Future management of this species may need to incorporate strategies to mitigate the impacts of increasing rainfall.

References:

Fordham, D. A. and Brook, B. W. (2010) Why tropical island endemics are acutely susceptible to global change. Biodiversity and Conservation 19(2): 329‒342.

Jentsch, A. and Beierkuhnlein, C. (2008) Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Comptes Rendus Geoscience 340: 621‒628.

Nicoll, M. A. C., Jones, C. G. and Norris, K. (2003) Declining survival rates in a reintroduced population of the Mauritius kestrel: evidence for non-linear density dependence and environmental stochasticity. Journal of Animal Ecology 72: 917‒926.

Senapathi, D., Nicoll, M. A. C., Teplitsky, C., Jones, C. G. and Norris, K. (2011) Climate change and the risks associated with delayed breeding in a tropical wild bird population. Proceedings of the Royal Society B 278: 3184‒3190.

Future of Cumulus Parametrization conference, Delft, July 10-14, 2017

Email: m.muetzelfeldt@pgr.reading.ac.uk

For a small city, Delft punches above its weight. It is famous for many things, including its celebrated Delftware (Figure 1). It was also the birthplace of one of the Dutch masters, Johannes Vermeer, who coincidentally painted some fine cityscapes with cumulus clouds in them (Figure 2). There is a university of technology with some impressive architecture (Figure 3). It holds the dubious honour of being the location of the first assassination using a pistol (or so we were told by our tour guide), when William of Orange was shot in 1584. To this list, it can now add hosting a one-week conference on the future of cumulus parametrization, and hopefully bringing about more of these conferences in the future.

Delftware_display

Figure 1: Delftware.

Vermeer-view-of-delft

Figure 2: Delft with canopy of cumulus clouds. By Johannes Vermeer, 1661.

Delft_AULA

Figure 3: AULA conference centre at Delft University of Technology – where we were based for the duration of the conference.

So what is a cumulus parametrization scheme? The key idea is as follows. Numerical weather and climate models work by splitting the atmosphere into a grid, with a corresponding grid length representing the length of each of the grid cells. By solving equations that govern how the wind, pressure and heating interact, models can then be used to predict what the weather will be like days in advance in the case of weather modelling. Or a model can predict how the climate will react to any forcings over longer timescales. However, any phenomena that are substantially smaller than this grid scale will not be “seen” by the models. For example, a large cumulonimbus cloud may have a horizontal extent of around 2km, whereas individual grid cells could be 50km in the case of a climate model. A cumulonimbus cloud will therefore not be explicitly modelled, but it will still have an effect on the grid cell in which it is located – in terms of how much heating and moistening it produces at different levels. To capture this effect, the clouds are parametrized, that is, the vertical profile of the heating and moistening due to the clouds are calculated based on the conditions in the grid cell, and this then affects the grid-scale values of these variables. A similar idea applies for shallow cumulus clouds, such as the cumulus humilis in Vermeer’s painting (Figure 2), or present-day Delft (Figure 3).

These cumulus parametrization schemes are a large source of uncertainty in current weather and climate models. The conference was aimed at bringing together the community of modellers working on these schemes, and working out which might be the best directions to go in to improve these schemes, and consequently weather and climate models.

Each day was a mixture of listening to presentations, looking at posters and breakout discussion groups in the afternoon, as well as plenty of time for coffee and meeting new people. The presentations covered a lot of ground: from presenting work on state-of-the-art parametrization schemes, to looking at how the schemes perform in operational models, to focusing on one small aspect of a scheme and modelling how that behaves in a high resolution model (50m resolution) that can explicitly model individual clouds. The posters were a great chance to see the in-depth work that had been done, and to talk to and exchange ideas with other scientists.

Certain ideas for improving the parametrization schemes resurfaced repeatedly. The need for scale-awareness, where the response of the parametrization scheme takes into account the model resolution, was discussed. One idea for doing this was the use of stochastic schemes to represent the uncertainty of the number of clouds in a given grid cell. The concept of memory also cropped up – where the scheme remembers if it had been active at a given grid cell in a previous point in time. This also ties into the idea of transitions between cloud regimes, e.g. when a stratocumulus layer splits up into individual cumulus clouds. Many other, sometimes esoteric, concepts were discussed, such as the role of cold pools, how much tuning of climate models is desirable and acceptable, how we should test our schemes, and what the process of developing the schemes should look like.

In the breakout groups, everyone was encouraged to contribute, which made for an inclusive atmosphere in which all points of view were taken on board. Some of the key points of agreement from these were that it was a good idea to have these conferences, and we should do it more often! Hopefully, in two years’ time, another PhD student will write a post on how the next meeting has gone. We also agreed that it would be beneficial to be able to share data from our different high resolution runs, as well as to be able to compare code for the different schemes.

The conference provided a picture of what the current thinking on cumulus parametrization is, as well as which directions people think are promising for the future. It also provided a means for the community to come together and discuss ideas for how to improve these schemes, and how to collaborate more closely with future projects such as ParaCon and HD(CP)2.

Sting Jet: the poisonous (and windy) tail of some of the most intense UK storms

Email: a.volonte@pgr.reading.ac.uk

IDL TIFF file
Figure 1: Windstorm Tini (12 Feb 2014) passes over the British Isles bringing extreme winds. A Sting Jet has been identified in the storm. Image courtesy of NASA Earth Observatory

It was the morning of 16th October when South East England got battered by the Great Storm of 1987. Extreme winds occurred, with gusts of 70 knots or more recorded continually for three or four consecutive hours and maximum gusts up to 100 knots. The damage was huge across the country with 15 million trees blown down and 18 fatalities.

case_study_great_storm_fig011
Figure 2: Surface wind gusts in the Great Storm of 1987. Image courtesy of UK Met Office.

The forecast issued on the evening of 15th October failed to identify the incoming hazard but forecasters were not to blame as the strongest winds were actually due to a phenomenon that had yet to be discovered at the time: the Sting Jet. A new topic of weather-related research had started: what was the cause of the exceptionally strong winds in the Great Storm?

It was in Reading at the beginning of 21st century that scientists came up with the first formal description of those winds, using observations and model simulations. Following the intuitions of Norwegian forecasters they used the term Sting Jet, the ‘sting at the end of the tail’. Using some imagination we can see the resemblance of the bent-back cloud head with a scorpion’s tail: strong winds coming out from its tip and descending towards the surface can then be seen as the poisonous sting at the end of the tail.

Conceptual+model+of+storm+development
Figure 3: Conceptual model of a sting-jet extratropical cyclone, from Clark et al, 2005. As the cloud head bends back and the cold front moves ahead we can see the Sting Jet exiting from the cloud tip and descending into the opening frontal fracture.  WJ: Warm conveyor belt. CJ: Cold conveyor belt. SJ: Sting jet.

In the last decade sting-jet research progressed steadily with observational, modelling and climatological studies confirming that the strong winds can occur relatively often, that they form in intense extratropical cyclones with a particular shape and are caused by an additional airstream that is neither related to the Cold nor to the Warm Conveyor Belt. The key questions are currently focused on the dynamics of Sting Jets: how do they form and accelerate?

Works recently published (and others about to come out, stay tuned!) claim that although the Sting Jet occurs in an area in which fairly strong winds would already be expected given the morphology of the storm, a further mechanism of acceleration is needed to take into account its full strength. In fact, it is the onset of mesoscale instabilities and the occurrence of evaporative cooling on the airstream that enhances its descent and acceleration, generating a focused intense jet (see references for more details). It is thus necessary a synergy between the general dynamics of the storm and the local processes in the cloud head in order to produce what we call the Sting Jet .

plot_3D_sj ccb_short
Figure 4: Sting Jet (green) and Cold Conveyor Belt (blue) in the simulations of Windstorm Tini. The animation shows how the onset of the strongest winds is related to the descent of the Sting Jet. For further details on this animation and on the analysis of Windstorm Tini see here.

References:

http://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/great-storm

Browning, K. A. (2004), The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Q.J.R. Meteorol. Soc., 130: 375–399. doi:10.1256/qj.02.143

Clark, P. A., K. A. Browning, and C. Wang (2005), The sting at the end of the tail: Model diagnostics of fine-scale three-dimensional structure of the cloud head. Q.J.R. Meteorol. Soc., 131: 2263–2292. doi:10.1256/qj.04.36

Martínez-Alvarado, O., L.H. Baker, S.L. Gray, J. Methven, and R.S. Plant (2014), Distinguishing the Cold Conveyor Belt and Sting Jet Airstreams in an Intense Extratropical Cyclone. Mon. Wea. Rev., 142, 2571–2595, doi: 10.1175/MWR-D-13-00348.1.

Hart, N.G., S.L. Gray, and P.A. Clark, 0: Sting-jet windstorms over the North Atlantic: Climatology and contribution to extreme wind risk. J. Climate, 0, doi: 10.1175/JCLI-D-16-0791.1.

Volonté, A., P.A. Clark, S.L. Gray. The role of Mesoscale Instabilities in the Sting-Jet dynamics in Windstorm Tini. Poster presented at European Geosciences Union – General Assembly 2017, Dynamical Meteorology (General session)

The onset and end of wet seasons over Africa

Email: c.m.dunning@pgr.reading.ac.uk

For many Africans, the timing of the wet season is of crucial importance, especially for those reliant upon subsistence agriculture, who depend on the seasonal rains for crop irrigation. In addition, the wet season recharges lakes, rivers and water storage tanks which constitute the domestic water supply in some areas. The timing of the wet season also affects the availability of energy from hydroelectric schemes, and has impacts upon the prevalence of certain disease carrying vectors, such as mosquitoes.

Climate change is already threatening many vulnerable populations, and changes in the timing or intensity of the wet season, or increasing uncertainty in the timing of the onset, may lead to significant socio-economic impacts. But before we consider future projections or past changes in the seasonality, we need to go back a few steps.

The first step is to find a method for determining when the wet season starts and ends (its ‘onset’ and ‘cessation’). In order to look at large-scale shifts in the timing of the wet season and relate this to wider-scale drivers, this method needs to be applicable across the entirety of continental Africa. Most previous methods for determining the onset focus on the national to regional scale, and are dependent on the exceedance of a certain threshold e.g. the first week with at least 20mm of rainfall, with one rainfall event of more than 10mm, and no dry spell of more than 10 days after the rain event for the next month. While such definitions work well at a national scale they are not applicable at a continental scale where rainfall amounts vary substantially. A threshold suitable for the dry countries at the fringes of the Sahara would not be suitable in the wetter East African highlands.

In addition to a vast range of rainfall amounts, the African continent also spans multiple climatic regimes. The seasonal cycle of precipitation over continental Africa is largely driven by the seasonal progression of the ITCZ and associated rain belts, which follows the maximum incoming solar radiation. In the boreal summer, when the thermal equator sits between the equator and the Tropic of Cancer, the ITCZ sits north of the equator and West Africa and the Sahel experience a wet season. During the boreal autumn the ITCZ moves south, and southern Africa experiences a wet season during the austral summer, followed by the northward return of the ITCZ during the boreal spring. As a consequence of this, central African regions and the Horn of Africa experience two wet seasons per year – one as the ITCZ travels north, and a second as the ITCZ travels south. A method for determining the onset and cessation at the continental scale thus needs to account for regions with multiple wet seasons per year.

In our paper (available here) we propose such a method, based on the method of Liebmann et al (2012). The method has three steps:

  • Firstly, determine the number of seasons experienced per year at the location (or grid point) of interest. This is achieved using harmonic analysis – the amplitude of the first and second harmonic were computed, using the entire timeseries and their ratio compared. If the ratio was greater than 1.0, i.e. the amplitude of the second harmonic was greater than the amplitude of the first harmonic then the grid point was defined as having two wet seasons per year (biannual), if the ratio was less than one then it was defined as having an annual regime. Figure 1 shows the ratio for one African rainfall dataset (TARCATv2). Three regions are identified as biannual regions; the Horn of Africa, an equatorial strip extending from Gabon to Uganda and a small region on the southern West African coastline.

    blog_fig1
    Figure 1: Location of regions with one and two seasons per year, determined using harmonic analysis. Yellow indicates two seasons per year, while pink/purple indicates one season per year. Computed from TARCATv2 data.
  • Secondly the period of the year when the wet season occurs was determined. This was achieved by looking for minima and maxima in the climatological cumulative daily rainfall anomaly to identify one or two seasons.
  • The third and final stage is to calculate the onset and cessation dates for each year. This is done by looking for the minima and maxima in the cumulative daily rainfall anomaly, calculated for each season.

Figure 2 shows the seasonal progression of the onset and cessation, with the patterns observed in agreement with those expected from the driving physical mechanisms, and continuous progression across the annual/biannual boundaries. Over West Africa and the Sahel, Figure 2a-b shows zonally-contiguous progression patterns with onset following the onset of the long rains and moving north, and cessation moving southward, preceding the end of the short rains. Over southern Africa Figure 2c-d shows the onset over southern Africa starting in the north-west and south-east, following the onset of the short rains, reaching the East African coast last, and cessation starting at the Zimbabwe, Mozambique, South Africa border and spreading out radially into the cessation of the long rains.

As well as testing the method for compatibility with known physical drivers of African rainfall, agreement across multiple satellite-based rainfall estimates was also examined. In general, good agreement was found across the datasets, particularly for regions with an annual regime and over the biannual region of East Africa.

blog_fig2
Figure 2: Southward and northward progression of the onset and cessation across the annual/biannual boundaries, computed using GPCP daily rainfall data 1998-2013.

The advantage of having a method that works at the continental scale is the ability to look at the impact of large-scale oscillations on wider-scale variability. One application of this method was to investigate the impact of El Niño upon both the annual rains and short rains (Figure 3). In Figure 3 we see the well-documented dipole in rainfall anomaly, with higher rainfall totals over 0–15°S and the Horn of Africa in El Niño years and the opposite between 15°S and 30°S.  This anomaly is stronger when we use this method compared with using standard meteorological seasons. We can also see that while the lower rainfall to the south is colocated with later onset dates and a consequentially shorter season, the higher rainfall over the Horn of Africa is associated with later cessation of the short rains, with only small differences in onset date.

blog_fig3
Figure 3: a-c) Composite of onset, cessation and wet season rainfall in El Niño years for annual rains and short rains, minus the mean over 1982-2013, computed using CHIRPS data d) Oct-Feb rainfall anomaly in  years (CHIRPS).

In addition to using this method for research purposes, its application within an operational setting is also being explored. Hopefully, the method will be included within the Rainwatch platform, which will be able to provide users with a probabilistic estimate of whether or not the season has started, based on the rainfall experienced so far that year, and historical rainfall data.

For more details, please see the paper detailing this work:

Dunning, C.M., E Black, and R.P. Allan (2016) The onset and cessation of seasonal rainfall over Africa, Journal of Geophysical Research: Atmospheres, 121 11,405-11,424, doi: 10.1002/2016JD025428

References:

Liebmann, B., I. Bladé, G. N. Kiladis, L. M. Carvalho, G. B. Senay, D. Allured, S. Leroux, and C. Funk (2012), Seasonality of African precipitation from 1996 to 2009, J. Clim.25(12), 4304–4322.

Can we really use El Niño to predict flooding?

R. Emerton, H. Cloke, E. Stephens, E. Zsoter, S. Woolnough, F. Pappenberger (2017). Complex picture for likelihood of ENSO-driven flood hazard. Nature Communications. doi: 10.1038/NCOMMS14796

Email: r.e.emerton@pgr.reading.ac.uk

When an El Niño is declared, or even forecast, we think back to memorable past El Niños (such as 1997/98), and begin to ask whether we will see the same impacts. Will California receive a lot of rainfall? Will we see droughts in tropical Asia and Australia? Will Peru experience the same devastating floods as in 1997/98, and 1982/83?

news_headlines_elnino

El Niño and La Niña, which see changes in the ocean temperatures in the tropical Pacific, are well known to affect weather, and indeed river flow and flooding, around the globe. But how well can we estimate the potential impacts of El Niño and La Niña, and how likely flooding is to occur?

This question is what some of us in the Water@Reading research group at the University of Reading have been looking to answer in our recent publication in Nature Communications. As part of our multi- and inter-disciplinary research, we work closely with the Red Cross / Red Crescent Climate Centre (RCCC), who are working on an initiative called Forecast-based Financing (FbF, Coughlan de Perez et al.). FbF aims to distribute aid (for example providing water purification tablets to prevent spread of disease, or digging trenches to divert flood water) ahead of a flood, based on forecasts. This approach helps to reduce the impact of the flood in the first place, rather than working to undo the damage once the flood has already occurred.

Photo credit: Red Cross / Red Crescent Climate Centre

In Peru, previous strong El Niños in 1982/83 and 1997/98 had resulted in devastating floods in several regions. As such, when forecasts in early 2015 began to indicate a very strong El Niño was developing, the RCCC and forecasters at the Peruvian national hydrological and meteorology agency (SENAMHI) began to look into the likelihood of flooding, and what FbF actions might need to be taken.

Typically, statistical products indicating the historical probability (likelihood [%] based on what happened during past El Niños) of extreme precipitation are used as a proxy for whether a region will experience flooding during an El Niño (or La Niña), such as these maps produced by the IRI (International Research Institute for Climate and Society). You may also have seen maps which circle regions of the globe that will be drier / warmer / wetter / cooler – we’ll come back to these shortly.

These rainfall maps show that Peru, alongside several other regions of the world, is likely to see more rainfall than usual during an El Niño. But does this necessarily mean there will be floods? And what products are out there indicating the effect of El Niño on rivers across the globe?

For organisations working at the global scale, such as the RCCC and other humanitarian aid agencies, global overviews of potential impacts are key in taking decisions on where to focus resources during an El Niño or La Niña. While these maps are useful for looking at the likely changes in precipitation, it has been shown that the link between precipitation and flood magnitude is nonlinear (Stephens et al.),  – more rain does not necessarily equal floods – so how does this transfer to the potential for flooding?

The motivation behind this work was to provide similar information, but taking into account the hydrology as well as the meteorology. We wanted to answer the question “what is the probability of flooding during El Niño?” not only for Peru, but for the global river network.

To do this, we have taken the new ECMWF ERA-20CM ensemble model reconstruction of the atmosphere, and run this through a hydrological model to produce the first 20th century global hydrological reconstruction of river flow. Using this new dataset, we have for the first time estimated the historical probability of increased or decreased flood hazard (defined as abnormally high or low river flow) during an El Niño (or La Niña), for the global river network.

elnino_flood_hazard_gif_beccalize
Figure 1: The probability of increased (blue) or decreased (red) flood hazard during each month of an El Nino. Based on the ensemble mean of the ERA-20CM-R 20th century river flow reconstruction.

The question – “what is the probability of flooding during El Niño?”, however, remains difficult to answer. We now have maps of the probability of abnormally high or low river flow (see Figure 1), and we see clear differences between the hydrological analysis and precipitation. It is also evident that the probabilities themselves are often lower, and much more uncertain, than might be useful – how do you make a decision on whether to provide aid to an area worried about flooding, when the probability of that flooding is 50%?

blob_floodhazard_comparison_map
Figure 2: Historical probability of increased / decreased flood hazard map for February, with overlay showing the typical impact map for winter during an El Nino. This highlights the complexity of the link between El Nino and flooding compared to the information usually available.

The likely impacts are much more complex than is often perceived and reported – going back to the afore-mentioned maps that circle regions of the globe and what their impact will be (warmer, drier, wetter?) – these maps portray these impacts as a certainty, not a probability, with the same impacts occurring across huge areas. For example, in Figure 2, we take one of the maps from our results, which indicates the probability of increased or decreased flood hazard in one month during an El Niño, and draw over this these oft-seen circles of potential impacts. In doing this, we remove all information on how likely (or unlikely) the impacts are, smaller scale changes within these circles (in some cases our flood hazard map even indicates a different impact), and a lot of the potential impacts outside of these circles – not to mention the likely impacts can change dramatically from one month to the next. For those organisations that take actions based on such information, it is important to be aware of the uncertainties surrounding the likely impacts of El Niño and La Niña.

“We conclude that while it may seem possible to use historical probabilities to evaluate regions across the globe that are more likely to be at risk of flooding during an El Niño / La Niña, and indeed circle large areas of the globe under one banner of wetter or drier, the reality is much more complex.”

PS. During the winter of 2015/16, our results estimated an ~80% likelihood of increased flood hazard in northern coastal Peru, with only ~10% uncertainty surrounding this. The RCCC took FbF actions to protect thousands of families from potentially devastating floods driven by one of the strongest El Niños on records. While flooding did occur, this was not as severe as expected based on the strength of the El Niño. More recently, during the past few months (January – March 2017), anomalously high sea surface temperatures (SSTs) in the far eastern Pacific (known as a “coastal El Niño” in Peru but not widely acknowledged as an El Niño because central Pacific SSTs are not anomalously warm) have led to devastating flooding in several regions and significant loss of life. And Peru wasn’t the only place that didn’t see the impacts it expected in 2015/16; other regions of the world, such as the US, also saw more rainfall than normal in places that were expected to be drier, and California didn’t receive the deluge they were perhaps hoping for. It’s important to remember that no two El Niños are the same, and El Niño will not be the only influence on the weather around the globe. While El Niño and La Niña can provide some added predictability to the atmosphere, the impacts are far from certain.

Presidente Kuczynski recorre zonas afectadas por lluvias e inund
Flooded areas of Trujillo, Peru, March 2017. Photo credit: Presidencia Peru, via Floodlist

Full reference:

R. Emerton, H. Cloke, E. Stephens, E. Zsoter, S. Woolnough, F. Pappenberger (2017). Complex picture for likelihood of ENSO-driven flood hazard. Nature Communications. doi: 10.1038/NCOMMS14796

Press Release:

Stationary Orographic Rainbands

Email: c.j.wright@pgr.reading.ac.uk

Small-scale rainbands often form downwind of mountainous terrain. Although relatively small in scale (a few tens of km across by up to ~100 km in length), these often poorly forecast bands can cause localised flooding as they can be associated with intense precipitation over several hours due to the anchoring effect of orography (Barrett et al., 2013).   Figure 1 shows a flash flood caused by a rainband situated over Cockermouth in 2009.  In some regions of southern France orographic banded convection can contribute 40% of the total rainfall (Cosma et al., 2002).  Rainbands occur in various locations and under different synoptic regimes and environmental conditions making them difficult to examine their properties and determine their occurrence in a systematic way (Kirshbaum et al. 2007a,b, Fairman et al. 2016).  My PhD considers the ability of current operational forecast models to represent these bands and the environmental controls on their formation.

blogfig1
Figure 1: Flash flood event caused by a rainband situated over Cockermouth, Cumbria, UK in 2009

 

What is a rainband?

  • A cloud and precipitation structure associated with an area of rainfall which is significantly elongated
  • Stationary (situated over the same location) with continuous triggering
  • Can form in response to moist, unstable air following over complex terrain
  • Narrow in width ~2-10 km with varying length scales from 10 – 100’s km

 

blogfig2
Figure 2: Schematic showing the difference between cellular and banded convection

To examine the ability of current operational forecast models to represent these bands a case study was chosen which was first introduced by Barrett, et al. (2016).  The radar observations during the event showed a clear band along The Great Glen Fault, Scotland (Figure 3).  However, Barrett, et al. (2016) concluded that neither the operational forecast or the operational ensemble forecast captured the nature of the rainband.  For more information on ensemble models see one of our previous blog posts by David Flack Showers: How well can we predict them?.

blogfig3
Figure 3: Radar observations of precipitation accumulation over a six hour period (between 3-9 am) showing a rainband located over The Great Glen Fault, Scotland on 29 December 2012.

Localised convergence and increased convective available potential energy along the fault supported the formation of the rainband.  To determine the effect of model resolution on the model’s representation of the rainband, a forecast was performed with the horizontal gird spacing decreased to 500 m from 1.5 km.  In this forecast a rainband formed in the correct location which generated precipitation accumulations close to those observed, but with a time displacement.  The robustness of this forecast skill improvement is being assessed by performing an ensemble of these convection-permitting simulations.  Results suggest that accurate representation of these mesoscale rainbands requires resolutions higher than those used operationally by national weather centres.

Idealised numerical simulations have been used to investigate the environmental conditions leading to the formation of these rainbands.  The theoretical dependence of the partitioning of dry flow over and around mountains on the non-dimensional mountain height is well understood.  For this project I examine the effect of this dependence on rainband formation in a moist environment.  Preliminary analysis of the results show that the characteristics of rainbands are controlled by more than just the non-dimensional mountain height, even though this parameter is known to be sufficient to determine flow behaviour relative to mountains.

This work has been funded by the Natural Environmental Research Council (NERC) under the project PREcipitation STructures over Orography (PRESTO), for more project information click here.

References

Barrett, A. I., S. L. Gray, D. J. Kirshbaum, N. M. Roberts, D. M. Schultz, and J. G. Fairman, 2015: Synoptic Versus Orographic Control on Stationary Convective Banding. Quart. J. Roy. Meteorol. Soc., 141, 1101–1113, doi:10.1002/qj.2409.

— 2016: The Utility of Convection-Permitting Ensembles for the Prediction of Stationary Convective Bands. Mon. Wea. Rev., 144, 10931114, doi:10.1175/MWR-D-15-0148.1.

Cosma, S., E. Richard, and F. Minsicloux, 2002: The Role of Small-Scale Orographic Features in the Spatial Distribution of Precipitation. Quart. J. Roy. Meteorol. Soc., 128, 75–92, doi:10.1256/00359000260498798.

Fairman, J. G., D. M. Schultz, D. J. Kirshbaum, S. L. Gray, and A. I. Barrett, 2016: Climatology of Banded Precipitation over the Contiguous United States. Mon. Wea. Rev., 144,4553–4568, doi: 10.1175/MWR-D-16-0015.1.

Kirshbaum, D. J., G. H. Bryan, R. Rotunno, and D. R. Durran, 2007a: The Triggering of Orographic Rainbands by Small-Scale Topography. J. Atmos. Sci., 64, 1530–1549, doi:10.1175/JAS3924.1.

Kirshbaum, D. J., R. Rotunno, and G. H. Bryan, 2007b: The Spacing of Orographic Rainbands Triggered by Small-Scale Topography. J. Atmos. Sci., 64, 4222–4245, doi:10.1175/2007JAS2335.1.