Can we really use El Niño to predict flooding?

R. Emerton, H. Cloke, E. Stephens, E. Zsoter, S. Woolnough, F. Pappenberger (2017). Complex picture for likelihood of ENSO-driven flood hazard. Nature Communications. doi: 10.1038/NCOMMS14796

Email: r.e.emerton@pgr.reading.ac.uk

When an El Niño is declared, or even forecast, we think back to memorable past El Niños (such as 1997/98), and begin to ask whether we will see the same impacts. Will California receive a lot of rainfall? Will we see droughts in tropical Asia and Australia? Will Peru experience the same devastating floods as in 1997/98, and 1982/83?

news_headlines_elnino

El Niño and La Niña, which see changes in the ocean temperatures in the tropical Pacific, are well known to affect weather, and indeed river flow and flooding, around the globe. But how well can we estimate the potential impacts of El Niño and La Niña, and how likely flooding is to occur?

This question is what some of us in the Water@Reading research group at the University of Reading have been looking to answer in our recent publication in Nature Communications. As part of our multi- and inter-disciplinary research, we work closely with the Red Cross / Red Crescent Climate Centre (RCCC), who are working on an initiative called Forecast-based Financing (FbF, Coughlan de Perez et al.). FbF aims to distribute aid (for example providing water purification tablets to prevent spread of disease, or digging trenches to divert flood water) ahead of a flood, based on forecasts. This approach helps to reduce the impact of the flood in the first place, rather than working to undo the damage once the flood has already occurred.

Photo credit: Red Cross / Red Crescent Climate Centre

In Peru, previous strong El Niños in 1982/83 and 1997/98 had resulted in devastating floods in several regions. As such, when forecasts in early 2015 began to indicate a very strong El Niño was developing, the RCCC and forecasters at the Peruvian national hydrological and meteorology agency (SENAMHI) began to look into the likelihood of flooding, and what FbF actions might need to be taken.

Typically, statistical products indicating the historical probability (likelihood [%] based on what happened during past El Niños) of extreme precipitation are used as a proxy for whether a region will experience flooding during an El Niño (or La Niña), such as these maps produced by the IRI (International Research Institute for Climate and Society). You may also have seen maps which circle regions of the globe that will be drier / warmer / wetter / cooler – we’ll come back to these shortly.

These rainfall maps show that Peru, alongside several other regions of the world, is likely to see more rainfall than usual during an El Niño. But does this necessarily mean there will be floods? And what products are out there indicating the effect of El Niño on rivers across the globe?

For organisations working at the global scale, such as the RCCC and other humanitarian aid agencies, global overviews of potential impacts are key in taking decisions on where to focus resources during an El Niño or La Niña. While these maps are useful for looking at the likely changes in precipitation, it has been shown that the link between precipitation and flood magnitude is nonlinear (Stephens et al.),  – more rain does not necessarily equal floods – so how does this transfer to the potential for flooding?

The motivation behind this work was to provide similar information, but taking into account the hydrology as well as the meteorology. We wanted to answer the question “what is the probability of flooding during El Niño?” not only for Peru, but for the global river network.

To do this, we have taken the new ECMWF ERA-20CM ensemble model reconstruction of the atmosphere, and run this through a hydrological model to produce the first 20th century global hydrological reconstruction of river flow. Using this new dataset, we have for the first time estimated the historical probability of increased or decreased flood hazard (defined as abnormally high or low river flow) during an El Niño (or La Niña), for the global river network.

elnino_flood_hazard_gif_beccalize
Figure 1: The probability of increased (blue) or decreased (red) flood hazard during each month of an El Nino. Based on the ensemble mean of the ERA-20CM-R 20th century river flow reconstruction.

The question – “what is the probability of flooding during El Niño?”, however, remains difficult to answer. We now have maps of the probability of abnormally high or low river flow (see Figure 1), and we see clear differences between the hydrological analysis and precipitation. It is also evident that the probabilities themselves are often lower, and much more uncertain, than might be useful – how do you make a decision on whether to provide aid to an area worried about flooding, when the probability of that flooding is 50%?

blob_floodhazard_comparison_map
Figure 2: Historical probability of increased / decreased flood hazard map for February, with overlay showing the typical impact map for winter during an El Nino. This highlights the complexity of the link between El Nino and flooding compared to the information usually available.

The likely impacts are much more complex than is often perceived and reported – going back to the afore-mentioned maps that circle regions of the globe and what their impact will be (warmer, drier, wetter?) – these maps portray these impacts as a certainty, not a probability, with the same impacts occurring across huge areas. For example, in Figure 2, we take one of the maps from our results, which indicates the probability of increased or decreased flood hazard in one month during an El Niño, and draw over this these oft-seen circles of potential impacts. In doing this, we remove all information on how likely (or unlikely) the impacts are, smaller scale changes within these circles (in some cases our flood hazard map even indicates a different impact), and a lot of the potential impacts outside of these circles – not to mention the likely impacts can change dramatically from one month to the next. For those organisations that take actions based on such information, it is important to be aware of the uncertainties surrounding the likely impacts of El Niño and La Niña.

“We conclude that while it may seem possible to use historical probabilities to evaluate regions across the globe that are more likely to be at risk of flooding during an El Niño / La Niña, and indeed circle large areas of the globe under one banner of wetter or drier, the reality is much more complex.”

PS. During the winter of 2015/16, our results estimated an ~80% likelihood of increased flood hazard in northern coastal Peru, with only ~10% uncertainty surrounding this. The RCCC took FbF actions to protect thousands of families from potentially devastating floods driven by one of the strongest El Niños on records. While flooding did occur, this was not as severe as expected based on the strength of the El Niño. More recently, during the past few months (January – March 2017), anomalously high sea surface temperatures (SSTs) in the far eastern Pacific (known as a “coastal El Niño” in Peru but not widely acknowledged as an El Niño because central Pacific SSTs are not anomalously warm) have led to devastating flooding in several regions and significant loss of life. And Peru wasn’t the only place that didn’t see the impacts it expected in 2015/16; other regions of the world, such as the US, also saw more rainfall than normal in places that were expected to be drier, and California didn’t receive the deluge they were perhaps hoping for. It’s important to remember that no two El Niños are the same, and El Niño will not be the only influence on the weather around the globe. While El Niño and La Niña can provide some added predictability to the atmosphere, the impacts are far from certain.

Presidente Kuczynski recorre zonas afectadas por lluvias e inund
Flooded areas of Trujillo, Peru, March 2017. Photo credit: Presidencia Peru, via Floodlist

Full reference:

R. Emerton, H. Cloke, E. Stephens, E. Zsoter, S. Woolnough, F. Pappenberger (2017). Complex picture for likelihood of ENSO-driven flood hazard. Nature Communications. doi: 10.1038/NCOMMS14796

Press Release:

From foehn to intense rainfall: the importance of Alps in influencing the regional weather

Email: a.volonte@pgr.reading.ac.uk

dsc_0196
Figure 1: View from Monte Lema (Italy-Switzerland) looking West. The Lake Maggiore region and the southern Alpine foothills are visible in the foreground whereas Monte Rosa and the Pennine Alps behind them are partially hidden by a characteristic foehn wall.  (A. Volonté, 4 January 2017)

The interaction between atmospheric flow and topography is at the origin of various important weather phenomena, as we have already seen in Carly Wright’s blog post. When a mountain range is particularly high and extended it can even block or deflect weather systems, as it happens with the Alps. For example, in Figure 1 we can see the main Alpine range with its over-4000m-high peaks blocking a cold front coming from the north. The main ridge acts as a wall, enhancing condensation and precipitation processes on the upstream side (stau condition) and leaving clear skies on the downstream lee side, where dry and mild katabatic foehn winds flow. The contrast is striking between sunny weather on Lake Maggiore and snowy conditions over Monte Rosa, just a few miles apart. The same phenomenon is shown in Figure 2 with a satellite image that highlights how a cold front coming from northwest gets blocked by the Alpine barrier. A person enjoying the sunny day in the southern side of the Alps, if unaware of this mechanism, would be very surprised  to know that the current weather is so different on the other side of the range.

poplex-2014295-terra-1km
Figure 2: Satellite image (MODIS-NASA) over the Alps and Po Valley on 22 October 2014
poplex-2016348-terra-1km
Figure 3: same as Figure 1 but on 13 December 2016

A comparison with Figure 3 helps to notice that in Figure 2 the shape of the cloud band closely mirrors the mountain range. As an additional remark,  this comparison shows that foehn bring clear skies even in the Po Valley, having blown away the typical mist/fog occurring in the region in Autumn and Winter months in high pressure regimes. The  stau/foehn dynamics is actually very fascinating, and you can read more about it in Elvidge and Renfrew (2015 ) and in Miltenberger et al. (2016), among others. Unfortunately, the interaction of weather systems with the Alps can often trigger very damaging phenomena, like heavy and long-lasting precipitation on one side of the slope, and this is what the rest of this post will be focused on. In fact, the most recent event of this kind just happened at the end of November, with intense and long-lasting rain affecting the southern slope of the Alps  and causing floods particularly in the Piedmont region, in northwestern Italy ( Figure 4).

tanaro2
Figure 4: River Tanaro flooding in the town of Garessio, 24 November 2016 (Piedmont, Italy). Source: http://www.corrierenazionale.it
arpa_piemonte
Figure 5: rainfall accumulated between 21 and 26 November 2016 in the Piedmont region. Source: Regional Agency for the protection of the Environment – Piedmont

Figure 5 shows that the accumulated rainfall in the event goes over 300 mm in a large band that follows the shape of the southern Alpine slope in the region (see map of Piedmont, from Google Maps), reaching even 600 mm in a few places. This situation is the result of moist southerly flow being blocked by the Alps and thus causing ascent and consequent precipitation to persist on the same areas for up to five days. It is quite common to see quasi-stationary troughs enter the Mediterranean region during Autumn months causing strong and long-lasting moist flows to move towards the Alps. Hence, it is crucial to understand  where the heaviest precipitation will occur. In other words, will it rain the most on top of the ridge or on the upstream plain? What processes are controlling the location of heavy precipitation with respect to the slope?

The study published by Davolio et al. (2016), available here and originated from my master degree’s thesis, tackles this issue focusing on northeastern Italy. In fact, the analysis includes three case studies in which heavy and long-lasting rain affected the eastern Alps and other three case studies in which intense rainfall was mainly located on the upstream plain. Although all the events showed common large-scale patterns and similar mesoscale settings, characterised by moist southerly low-level flow interacting with the Alps, the rainfall distribution turned out to be very dissimilar. The study highlights that the two precipitation regimes strongly differ in terms of interaction of the flow with the mountain barrier. When the flow is able to go over the Alps the heaviest rain occurs on top of the ridge. When the flow is instead blocked and deflected by the ridge (flow around), creating a so-called barrier wind, intense convection is triggered on the upstream plain (Figure 6) .

qj2731
Figure 6: Schematic diagram of the key mechanisms governing the two different wind and precipitation patterns over NE Italy. (a) Blocked low-level flow, barrier wind, convergence and deep convection over the plain, upstream the orography. (b) Flow over conditions with orographic lifting and precipitation mainly over the Alps. From Davolio et al. (2016)
convection
Figure 7: cross section going from the Adriatic Sea to the Alps in one of the events simulated. Equivalent potential temperature is shaded, thick black lines indicate clouds while arrows show tangent wind component. See Davolio et al. (2016)

The key mechanism that explains this different evolution is connected to the thermodynamic state of the impinging flow. In fact, when the southerly moist and warm air gets close to the Alpine barrier it is lifted above the colder air already present at the base of the orography. It can be said that the colder air behaves as a first effective mountain for the incoming flow. If this lifting process triggers convection, then the persistence of a blocked-flow condition is highly favoured (see Figure 7). On the contrary, if this initial lifting process does not trigger convection the intense moist flow will eventually be able to go over the ridge, where a more substantial ascent will take place, causing heavy rain on the ridge top. This study also looks at numerical parameters used in more idealised analyses (like in Miglietta and Rotunno (2009)), finding a good agreement with the theory.

To summarise, we can say that the Alpine range is able to significantly modify weather systems when interacting with them. Thus, an in-depth understanding of the processes taking place during the interaction, along with a coherent model is necessary to capture correctly the effects on the local weather, being either a rainfall enhancement, the occurrence of foehn winds or various other phenomena.

References

Davolio, S., Volonté A., Manzato A., Pucillo A., Cicogna A. and Ferrario M.E. (2016), Mechanisms producing different precipitation patterns over north-eastern Italy: insights from HyMeX-SOP1 and previous events. Q.J.R. Meteorol. Soc., 142 (Suppl 1): 188-205. doi:10.1002/qj.2731

Elvidge A. D., Renfrew, I. A. (2015). The causes of foehn warming in the lee of mountains. Bull. Am. Meteorol. Soc. 97: 455466, doi:10.1175/BAMS-D-14-00194.1.

Miglietta M. and Rotunno R., (2009) Numerical Simulations of Conditionally Unstable Flows over a Mountain Ridge. J. Atmos. Sci., 66, 1865–1885, doi: 10.1175/2009JAS2902.1. 

Miltenberger, A. K., Reynolds, S. and Sprenger, M. (2016), Revisiting the latent heating contribution to foehn warming: Lagrangian analysis of two foehn events over the Swiss Alps. Q.J.R. Meteorol. Soc., 142: 2194–2204. doi:10.1002/qj.2816