A Journey through Hot British Summers

Email: s.h.lee@pgr.reading.ac.uk

The phrase “British summer” tends to evoke images of disorganised family barbecues being interrupted by heavy rain, or the covers coming on at Wimbledon, or the saying “three fine days and a thunderstorm”. Yet in recent years, hot weather has become an increasingly regular occurrence. Let me take you on a brief tour of notably hot summers in the UK. I’ll largely draw on the Met Office HadUK-Grid dataset, shown in Figure 1.

Figure 1: Nationally-averaged daily maximum temperatures for June-July-August from HadUK-Grid. In red is a 30-year centred running mean, which has risen by 1°C since the mid-20th century.

HadUK-Grid begins in 1884, but thanks to the Central England Temperature dataset (which extends back to 1659), we do have records of earlier heatwaves.  These include the hot summer of 1666, which set the scene for the Great Fire of London in September. The summers of 1781, 1826 and 1868 were also particularly hot. The first hot summer in the HadUK-Grid series is 1899, which was the warmest summer by average maxima in that series until 1976!

But our journey properly begins in 1911, when the temperature reached 36.7°C on August 9th. At the time, this was the highest reliably recorded temperature measured in the UK. It is hard to imagine how this summer must have felt at the time – not least in the cooler average climate, but also with the less developed infrastructure and clothing customs of the time. As with any heatwave, its impacts were large with increased death, drought, and agricultural impacts. The summer of 1911 was followed by the summer of 1912, which was the 2nd wettest on record for the UK. Such a turnaround must have been equally hard to believe and does highlight that extreme swings in the British weather are not, in themselves, new. In a series from 1884, the summer of 1911 is the 8th warmest in terms of the UK average maximum temperature (at the time, it would have been 2nd, with only 1899 warmer).

Stopping briefly in 1933 (which eclipsed 1911, but pales in comparison with the dustbowl conditions being experienced in the US at the time) and then again in August 1947 (which remains 2nd warmest for UK average maxima and the nation’s driest, and was in huge contrast to the tremendously snowy and cold February), our next destination is 1975.

1975 currently ranks as the 11th warmest for UK average maxima but is also the 19th driest. This, when combined with the dry winter that followed, set the scene for the infamous summer of 1976. Both these summers followed a spell of very cool summers, with no particularly remarkable summers in the 1960s, while the UK did not see a temperature above 28°C in 1974 (almost unthinkable nowadays). I won’t go into huge detail about the 1976 summer, but it is engrained in the minds of a generation thanks not only to its remarkable June heatwave (which has never been matched) but also the cool climate in which it occurred. It ranks as the 2nd driest summer for the UK and remains the warmest on record in terms of average maxima – though no individual month holds the number 1 spot.

Let us next whizz off to July 1983, which at the time had the warmest nationally averaged maxima for the month (it now ranks 3rd). Oddly enough, while the UK baked in heat, the temperature at Vostok, Antarctica dropped to -89.2°C on the 21st – the lowest surface-based temperature ever recorded. I am keeping the topic of this blog to hot summers, but I want to give 1985 a special mention – the most recent summer when the UK-average maxima were less than 17°C, a formerly frequent occurrence.

As we hot-foot it toward the end of the 20th century (pun intended), we arrive at 1990. Liverpool had just won the First Division (sound familiar?) and on August 3rd the temperature at Cheltenham, Gloucestershire reached 37.1°C – beating the record set in 1911 after 79 years. That night, the temperature fell to only 23.9°C in Brighton – the warmest night on record. However, the heatwave was rather brief but intense (3 consecutive days exceeded 35°C, the only other occurrences were in 1976). For a prolonged heatwave, we jump to August 1995. With a UK average maximum of 22.8°C, it remains the UK’s warmest August by that metric, and the 2nd driest. The summer ranks 2nd warmest by maxima. Soon after, the August of 1997 (4th warmest) added to growing evidence of a change to the British climate.

But it was in the August of 2003 when things really kicked off. In the earliest heatwave I remember, the temperature hit 38.5°C on the 10th at Faversham, Kent (satellite image in Figure 2) – the first time the UK had surpassed 37.8°C (100°F) and breaking the record from 1990 after only 23 years. 30°C was exceeded somewhere for 10 consecutive days. The summer of 2003 ranks nowadays as 6th warmest by average maxima; across Europe conditions were more extreme with a huge estimated death toll.

Figure 2: Terra-MODIS imagery from 10 August 2003, when the UK first surpassed 100°F and most of Europe was experiencing an intense heatwave (via https://worldview.earthdata.nasa.gov/)

Only 3 years later, July 2006 set the record for the hottest month for the UK-average maxima (23.3°C), and set – at the time – a record for the highest-recorded July temperature (36.5°C at Wisley on the 19th). Ranking 4th warmest by average maxima, the summer was even more extreme across mainland Europe.

What followed from 2007 through 2012 was a spell of wet summers, but we shrug off all that Glastonbury mud to arrive at July 2013, which currently ranks as 4th warmest by average maxima and saw the longest spell of >28°C weather since 1997.

Skipping through in increasingly short steps, we arrive for a brief blast on July 1st, 2015 – when the July record from 2006 fell, with 36.7°C at Heathrow in an otherwise cool month. We hop over now to 2018…

The summer of 2018, memorable for England’s performance in the World Cup, saw very warm temperatures in June and July. By nationally averaged maxima, June 2018 ranks 2nd behind 1940, and July sits 2nd behind 2006. The summer ranks 3rd, but by mean temperature is the warmest. Though not reaching the dizzying highs of 2003 (“only” 35.3°C was reached on July 26th), the prolonged dry conditions which began in May across England led to parched grasses (Figure 3), wildfires, and low river levels. I may have also had a viral tweet.

Figure 3: Brown grass during summer 2018 at the University of Reading, as seen in Google Earth.

With the present day in sight, our journey is not yet over. Stepping into 2019, an otherwise unremarkable summer was characterised with huge bursts of heat – setting records across Europe – which on July 25th saw the temperature reach 38.7°C at Cambridge Botanic Gardens. This eclipsed the 2003 record and became only the 2nd day – at the time – when 100°F or more had been reached in the UK.

But that is still not the end of the story! After a record-setting sunny spring followed by a mixed first half of summer, on July 31st 2020 the temperature at Heathrow hit 37.8°C – becoming the UK’s third warmest day on record and the third time 100°F had been recorded. The following Friday, 36.4°C was reached at Heathrow and Kew – the UK’s 9th warmest day on record, and highest temperature in August since 2003. Figure 4 shows the view at the University atmospheric observatory shortly after 34.8°C was reached, Reading’s 4th highest in August since records began in 1908.

Figure 4: The University of Reading Atmospheric Observatory on the afternoon of August 7th, shortly after 34.8°C had been recorded by the automatic sensor.

Forecasts suggest a continuation of hot weather through the next week or so, with many records up for grabs. However, we should be mindful that heatwaves cause suffering and excess deaths, too. And, with the evidently increasing frequency with which these hot extremes are occurring (note how so many of the stops on my tour were clustered in the last 30 years), they are not good news, but another sign that our climate is changing.

Now that we have blasted through the 100°F barrier, our attention turns to 40°C. Research suggests this is already becoming much more likely thanks to climate change and will continue to do so. Reaching such extremes in the UK requires a unique combination of factors – but when these do come together, expect yet more records to fall.

Thanks to Stephen Burt for useful discussions.

Further Reading:

McCarthy, M., et al. 2019: Drivers of the UK summer heatwave of 2018. Weather, https://doi.org/10.1002/wea.3628.

Black, E., et al. 2006: Factors contributing to the summer 2003 European heatwave. Weather, https://doi.org/10.1256/wea.74.04

Burt, 2006: The August 2003 heatwave in the United Kingdom: Part 1 – Maximum temperatures and historical precedents. Weather, https://doi.org/10.1256/wea.10.04A

Burt and Eden, 2007: The August 2003 heatwave in the United Kingdom: Part 2 – The hottest sites. Weather, https://doi.org/10.1256/wea.10.04B

Brugge, 1991: The record-breaking heatwave of 1-4 August 1990 over England and Wales. Weather, https://doi.org/10.1002/j.1477-8696.1991.tb05667.x

How do ocean and atmospheric heat transports affect sea-ice extent?

Email: j.r.aylmer@pgr.reading.ac.uk

Downward trends in Arctic sea-ice extent in recent decades are a striking signal of our warming planet. Loss of sea ice has major implications for future climate because it strongly influences the Earth’s energy budget and plays a dynamic role in the atmosphere and ocean circulation.

Comprehensive numerical models are used to make long-term projections of the future climate state under different greenhouse gas emission scenarios. They estimate that the Arctic ocean will become seasonally ice free by the end of the 21st century, but there is a large uncertainty on the timing due to the spread of estimates across models (Fig. 1).

Figure 1: Projections of Arctic sea-ice extent under ‘moderate’ emissions in 20 recent-generation climate models. Model data: CMIP6 multi-model ensemble; observational data: National Snow & Ice Data Center.

What causes this spread, and how might it be reduced to better constrain future projections? There are various factors (Notz et al. 2016), but of interest to our work is the large-scale forcing of the atmosphere and ocean. The mean atmospheric circulation transports about 3 PW of heat from lower latitudes into the Arctic, and the oceans transport about a tenth of that (e.g. Trenberth and Fasullo, 2017; 1 PW = 1015 W). Our goal is to understand the relative roles of Ocean and Atmospheric Heat Transports (OHT, AHT) on long timescales. Specifically, how sensitive is the sea-ice cover to deviations in OHT and AHT, and what underlying mechanisms determine the sensitivities?

We developed a highly simplified Energy-Balance Model (EBM) of the climate system (Fig. 2)—it has only latitudinal variations and is described by a few simple equations relating energy transfer between the atmosphere, ocean, and sea ice (Aylmer et al. 2020). The latitude of the sea-ice edge is an analogue for ice extent in the real world. The simplicity of the EBM allows us to isolate the basic physics of the problem, which would not be possible going directly with the complex output of a full climate model.

Figure 2: Simplified schematic of our Energy-Balance Model (EBM; see Aylmer et al. 2020 for technical details). Arrows represent energy fluxes, each varying with latitude, between the atmosphere, ocean, and sea ice.

We generated a set of simulations in which OHT varies and checked the response of the ice edge. This is a measure of the effective sensitivity of the ice cover to OHT (Fig. 3a)—it is not the actual sensitivity because AHT decreases (Fig. 3b), and we are really seeing in Fig. 3a the net response of the ice edge to changes in both OHT and AHT.

Figure 3: (a) Effective sensitivity of the (annual-mean) sea-ice edge to varying OHT (expressed as the mean convergence over the ice pack). (b) AHT convergence reduces at the same time, which partially cancels the true impact of increasing OHT on sea ice.

This reduction in AHT with increasing OHT is called Bjerknes compensation, and it occurs in full climate models too (Outten et al. 2018). Here, it has a moderating effect on the true impact of increasing OHT. With further analysis, we determined the actual sensitivity to be about 1.5 times the effective sensitivity. The actual sensitivity of the ice edge to AHT turns out to be about half that to the OHT.

What sets the difference in OHT and AHT sensitivities? This is easily answered within the EBM framework. We derived a general expression for the ratio of (actual) ice-edge sensitivities to OHT (so) and AHT (sa):

A higher-order term has been neglected for simplicity here, but the basic point remains: the ratio of sensitivities mainly depends on the parameters BOLR and Bdown. These are bulk representations of atmospheric feedbacks and determine the efficiency of outgoing and downwelling longwave radiation, respectively. They are always positive, so the ice edge is always more sensitive to OHT than AHT.

The interpretation of this equation is simple. AHT converging over the ice pack can either be transferred to the underlying sea ice, or radiated to space, having no impact on the ice, and the partitioning is controlled by Bdown and BOLR. The same amount of OHT converging under the ice pack can only go through the ice and is thus the more efficient driver.

Climate models with larger OHTs tend to have less sea ice (Mahlstein and Knutti, 2011). We have also found strong correlations between OHT and the sea-ice edge in several of the models listed in Fig. 1 individually. Ice-edge sensitivities and B values can be determined per model, and our equation predicts how these should be related. Our work thus provides a way to investigate how much physical biases in OHT and AHT contribute to sea-ice-projection uncertainties.

APPLICATE General Assembly and Early Career Science event

5

On 28th January to 1st February I attended the APPLICATE (Advanced Prediction in Polar regions and beyond: modelling, observing system design and LInkages associated with a Changing Arctic climaTE (bold choice)) General Assembly and Early Career Science event at ECMWF in Reading. APPLICATE is one of the EU Horizon 2020 projects with the aim of improving weather and climate prediction in the polar regions. The Arctic is a region of rapid change, with decreases in sea ice extent (Stroeve et al., 2012) and changes to ecosystems (Post et al., 2009). These changes are leading to increased interest in the Arctic for business opportunities such as the opening of shipping routes (Aksenov et al., 2017). There is also a lot of current work being done on the link between changes in the Arctic and mid-latitude weather (Cohen et al., 2014), however there is still much uncertainty. These changes could have large impacts on human life, therefore there needs to be a concerted scientific effort to develop our understanding of Arctic processes and how this links to the mid-latitudes. This is the gap that APPLICATE aims to fill.

The overarching goal of APPLICATE is to develop enhanced predictive capacity for weather and climate in the Arctic and beyond, and to determine the influence of Arctic climate change on Northern Hemisphere mid-latitudes, for the benefit of policy makers, businesses and society.

APPLICATE Goals & Objectives

Attending the General Assembly was a great opportunity to get an insight into how large scientific projects work. The project is made up of different work packages each with a different focus. Within these work packages there are then a set of specific tasks and deliverables spread out throughout the project. At the GA there were a number of breakout sessions where the progress of the working groups was discussed. It was interesting to see how these discussions worked and how issues, such as the delay in CMIP6 experiments, are handled. The General Assembly also allows the different work packages to communicate with each other to plan ahead, and for results to be shared.

2
An overview of APPLICATE’s management structure take from: https://applicate.eu/about-the-project/project-structure-and-governance

One of the big questions APPLICATE is trying to address is the link between Arctic sea-ice and the Northern Hemisphere mid-latitudes. Many of the presentations covered different aspects of this, such as how including Arctic observations in forecasts affects their skill over Eurasia. There were also initial results from some of the Polar Amplification (PA)MIP experiments, a project that APPLICATE has helped coordinate.

1
Attendees of the Early Career Science event co-organised with APECS

At the end of the week there was the Early Career Science Event which consisted of a number of talks on more soft skills. One of the most interesting activities was based around engaging with stakeholders. To try and understand the different needs of a variety of stakeholders in the Arctic (from local communities to shipping companies) we had to try and lobby for different policies on their behalf. This was also a great chance to meet other early career scientists working in the field and get to know each other a bit more.

What a difference a day makes, heavy snow getting the ECMWF’s ducks in the polar spirit.

Email: sally.woodhouse@pgr.reading.ac.uk

References

Aksenov, Y. et al., 2017. On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice. Marine Policy, 75, pp.300–317.

Cohen, J. et al., 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), pp.627–637.

Post, E. & Others, 24, 2009. Ecological Dynamics Across the Arctic Associated with Recent Climate Change. Science, 325(September), pp.1355–1358.

Stroeve, J.C. et al., 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39(16), pp.1–7.

Night at the Museum!

On Friday November 30th, Prof. Paul Williams and I ran a ‘pop-up science’ station at the Natural History Museum’s “Lates” event (these are held on the last Friday of each month; the museum is open for all until 10pm, with additional events and activities). Our station was entitled “Turbulence Ahead”, and focused on communicating research under two themes:

  1.  Improving the predictability of clear-air turbulence (CAT) for aviation
  2.  The impact of climate change on aviation, particularly in terms of increasing CAT

There were several other stations, all run by NERC-funded researchers. Our stall went ‘live’ at 6 PM, and from that point on we were speaking almost constantly for the next 3.5 hours – with hundreds (not an exaggeration!) of people coming to our stall to find out more. Neither of us were able to take much of a break, and I’ve never had quite such a sore voice!

IMG_1769
Turbulence ahead? Not on this Friday evening!

Our discussions covered:

  • What is clear-air turbulence (CAT) and why is it hazardous to aviation?
  • How do we predict CAT? How has Paul’s work improved this?
  • How is CAT predicted to change in the future? Why?
  • What other ways does climate change affect aviation?

Those who came to our stall asked some very intelligent questions, and neither of us encountered a ‘climate denier’ – since we were speaking about a very applied impact of climate change, this was heartening. This impact of climate change is not often considered – it’s not as obvious as heatwaves or melting ice, but is a very real threat as shown in recent studies (e.g. Storer et al. 2017). It was a challenge to explain some of these concepts to the general public – some had heard of the jet stream, others had not, whilst some were physicists… and even the director of the British Geological Survey, John Ludden, turned up! It was interesting to hear from so many people who were self-titled “nervous flyers” and deeply concerned about the future potential for more unpleasant journeys.

I found the evening very rewarding; it was interesting to gauge a perspective of how the public perceive a scientist and their work, and it was amazing to see so many curious minds wanting to find out more about subjects with which they are not so familiar.

My involvement with this event stems from my MMet dissertation work with Paul and Tom Frame looking at the North Atlantic jet stream. Changes in the jet stream have large impacts on transatlantic flights (Williams 2016) and the frequency and intensity of CAT. Meanwhile, Paul was a finalist for the 2018 NERC Impact Awards in the Societal Impact category for his work on improving turbulence forecasts – he finished as runner-up in the ceremony which was held on Monday December 3rd.

So, yes, there may indeed be turbulent times ahead – but this Friday evening certainly went smoothly!

Email: s.h.lee@pgr.reading.ac.uk

Twitter: @SimonLeeWx

References

Storer, L. N., P. D. Williams, and M. M. Joshi, 2017: Global Response of Clear-Air Turbulence to Climate Change. Geophys. Res. Lett., 44, 9979-9984, https://doi.org/10.1002/2017GL074618

Williams, P. D., 2016: Transatlantic flight times and climate change. Environ. Res. Lett., 11, 024008, https://doi.org/10.1088/1748-9326/11/2/024008.

Communicating uncertainties associated with anthropogenic climate change

Email: j.f.talib@pgr.reading.ac.uk

This week Prof. Ed Hawkins from the Department of Meteorology and NCAS-Climate gave a University of Reading public lecture discussing the science of climate change. A plethora of research was presented, all highlighting that humans are changing our climate. As scientists we can study the greenhouse effect in scientific labs, observe increasing temperatures across the majority of the planet, or simulate the impact of human actions on the Earth’s climate through using climate models.

simulating_temperature_rise
Figure 1. Global-mean surface temperature in observations (solid black line), and climate model simulations with (red shading) and without (blue shading) human actions. Shown during Prof. Ed Hawkins’ University of Reading Public Lecture.

Fig. 1, presented in Ed Hawkins’ lecture, shows the global mean temperature rise associated with human activities. Two sets of climate simulations have been performed to produce this plot. The first set, shown in blue, are simulations controlled solely by natural forcings, i.e. variations in radiation from the sun and volcanic eruptions. The second, shown in red, are simulations which include both natural forcing and forcing associated with greenhouse gas emissions from human activities. The shading indicates the spread amongst climate models, whilst the observed global-mean temperature is shown by the solid black line. From this plot it is evident that all climate models attribute the rising temperatures over the 20th and 21st century to human activity. Climate simulations without greenhouse gas emissions from human activity indicate a much smaller rise, if any, in global-mean temperature.

However, whilst there is much agreement amongst climate scientists and climate models that our planet is warming due to human activity, understanding the local impact of anthropogenic climate change contains its uncertainties.

For example, my PhD research aims to understand what controls the location and intensity of the Intertropical Convergence Zone. The Intertropical Convergence Zone is a discontinuous, zonal precipitation band in the tropics that migrates meridionally over the seasonal cycle (see Fig. 2). The Intertropical Convergence Zone is associated with wet and dry seasons over Africa, the development of the South Asian Monsoon and the life-cycle of tropical cyclones. However, currently our climate models struggle to simulate characteristics of the Intertropical Convergence Zone. This, alongside other issues, results in climate models differing in the response of tropical precipitation to anthropogenic climate change.

animation
Figure 2. Animation showing the seasonal cycle of the observed monthly-mean precipitation rates between 1979-2014.

Figure 3 is a plot taken from a report written by the Intergovernmental Panel on Climate Change (Climate Change 2013: The Physical Science Basis). Both maps show the projected change from climate model simulations in Northern Hemisphere winter precipitation between the years 2016 to 2035 (left) and 2081 to 2100 (right) relative to 1986 to 2005 under a scenario where minimal action is taken to limit greenhouse gas emissions (RCP8.5) . Whilst the projected changes in precipitation are an interesting topic in their own right, I’d like to draw your attention to the lines and dots annotated on each map. The lines indicate where the majority of climate models agree on a small change. The map on the left indicates that most climate models agree on small changes in precipitation over the majority of the globe over the next two decades. Dots, meanwhile, indicate where climate models agree on a substantial change in Northern Hemisphere winter precipitation. The plot on the right indicates that across the tropics there are substantial areas where models disagree on changes in tropical precipitation due to anthropogenic climate change. Over the majority of Africa, South America and the Maritime Continent, models disagree on the future of precipitation due to climate change.

IPCC_plot
Figure 3. Changes in Northern Hemisphere Winter Precipitation between 2016 to 2035 (left) and 2081 to 2100 (right) relative to 1986 to 2005 under a scenario with minimal reduction in anthropogenic greenhouse gas emission. Taken from IPCC – Climate Change 2013: The Physical Science Basis.

How should scientists present these uncertainties?

I must confess that I am nowhere near an expert in communicating uncertainties, however I hope some of my thoughts will encourage a discussion amongst scientists and users of climate data. Here are some of the ideas I’ve picked up on during my PhD and thoughts associated with them:

  • Climate model average – Take the average amongst climate model simulations. With this method though you take the risk of smoothing out large positive and negative trends. The climate model average is also not a “true” projection of changes due to anthropogenic climate change.
  • Every climate model outcome – Show the range of climate model projections to the user. Here you face the risk of presenting the user with too much climate data. The user may also trust certain model outputs which suit their own agenda.
  • Storylines – This idea was first shown to me in a paper by Zappa, G. and Shepherd, T. G., (2017). You present a series of storylines in which you highlight the key processes that are associated with variability in the regional weather pattern of interest. Each change in the set of processes leads to a different climate model projection. However, once again, the user of the climate model data has to reach their own conclusion on which projection to take action on.
  • Probabilities with climate projections – Typically with short- and medium-range weather forecasts probabilities are used to support the user. These probabilities are generated by re-performing the simulations, each with either different initial conditions or a slight change in model physics, to see the percentage of simulations that agree on model output. However, with climate model simulations, it is slightly more difficult to associate probabilities with projections. How do you generate the probabilities? Climate models have similarities in the methods which they use to represent the physics of our atmosphere and therefore you don’t want the probabilities associated with each climate projection due to similarity amongst climate model set-up. You could base the probabilities on how well the climate model simulates the past, however just because a model simulates the past correctly, doesn’t mean it will correctly simulate the forcing in the future.

There is much more that can be said about communicating uncertainty among climate model projections – a challenge which will continue for several decades. As climate scientists we can sometimes fall into the trap on concentrating on uncertainties. We need to keep on presenting the work that we are confident about, to ensure that the right action is taken to mitigate against anthropogenic climate change.

It’s a #GlobalHeatwave

Email: s.h.lee@pgr.reading.ac.uk 

Sometimes a simple tweet on a Sunday evening can go a long way.

This summer’s persistent dry and warm weather in the UK has led to many comparisons to the summer of 1976, which saw a lethal combination of the warmest June-August mean maximum temperatures (per the Met Office record stretching back to 1910) and a record-breaking lack of rainfall (a measly 104.6 mm – since bested by 1995’s 103.0 mm –  compared with the record-wettest 384.4 mm in 1912). When combined with a hot summer the year before and a dry winter, water shortages were historic and the summer has become a benchmark to which all UK heatwaves are compared. So far, 2018 has set a new record for the driest first half of summer for the UK (a record stretching back to 1961) but it remains to be seen whether it will truly rival ’76.

All these comparisons made me wonder: what did global temperatures look like during the heatwave of 1976? Headlines have been filled with news of other heatwaves across the Northern Hemisphere, including in AfricaFinland and Japan. Was the UK heatwave in 1976 also part of a generally warm pattern?

So I had a look at the data using the plotting tool available on NASA’s Goddard Institute for Space Studies (GISS) site, and composed a relatively simple tweet which took off in a manner only fitting for a planet undergoing rapid warming:

At the time of writing, it’s been retweeted over 8,800 times in under 48 hours and featured as part of a Twitter Moment. Even Héctor Bellerín, a footballer for Arsenal, retweeted it!

Once the tweet had taken on a life of its own, I was also well aware of so-called “climate change deniers” (I don’t like the term, but it’s the best I can do) lurking out there, and I was somewhat apprehensive of what might get said. I’ve seen Paul Williams have many not-so-pleasant Twitter encounters on the subject of climate change. However, I was actually quite surprised. Aside from a few comments here and there from ‘deniers’ (usually focusing on fundamental misunderstandings of averaging periods and the interpolation used by NASA to deal with areas of low data coverage), the response was generally positive. People were shocked, frightened, moved…and thankful to have perhaps finally grasped what global warming meant.

I endeavoured to keep it cordial and scientific, as the issue is too big to make enemies over – we all need to work together to tackle the problem.

So, maybe now I have some idea how Ed Hawkins felt when his global warming spiral went viral and eventually ended up in the 2016 Olympics opening ceremony. I guess the biggest realisation for me is that, as a scientist, I’m familiar with graphics such as these showing the extent of global warming, but the wider public clearly aren’t – and that’s part of the reason I believe the tweet became so popular.

I can’t say that the 2018 UK heatwave is due to global warming. However, with unusually high temperatures present across the globe, it takes less significant weather patterns to produce significant heatwaves in the UK (and elsewhere). And with the jet streams that guide our weather systems already feeling the effects of climate change (something which I researched as an undergraduate), we can only expect more extremes in the future.

Trouble in paradise: Climate change, extreme weather and wildlife conservation on a tropical island.

Joseph Taylor, NERC SCEARNIO DTP student. Zoological Society of London.

Email: J.Taylor5@pgr.reading.ac.uk

Projecting the impacts of climate change on biodiversity is important for informing

Mauritius Kestrel by Joe Taylor
Male Mauritius kestrel (Falco punctatus) in the Bambous Mountains, eastern Mauritius. Photo by Joe Taylor.

mitigation and adaptation strategies. There are many studies that project climate change impacts on biodiversity; however, changes in the occurrence of extreme weather events are often omitted, usually because of insufficient understanding of their ecological impacts. Yet, changes in the frequency and intensity of extreme weather events may pose a greater threat to ecosystems than changes in average weather regimes (Jentsch and Beierkuhnlein 2008). Island species are expected to be particularly vulnerable to climate change pressures, owing to their inherently limited distribution, population size and genetic diversity, and because of existing impacts from human activities, including habitat destruction and the introduction of non-native species (e.g. Fordham and Brook 2010).

Mauritius is an icon both of species extinction and the successful recovery of threatened species. However, the achievements made through dedicated conservation work and the investment of substantial resources may be jeopardised by future climate change. Conservation programmes in Mauritius have involved the collection of extensive data on individual animals, creating detailed longitudinal datasets. These provide the opportunity to conduct in-depth analyses into the factors that drive population trends.

My study focuses on the demographic impacts of weather conditions, including extreme events, on three globally threatened bird species that are endemic to Mauritius. I extended previous research into weather impacts on the Mauritius kestrel (Falco punctatus), and applied similar methods to the echo parakeet (Psittacula eques) and Mauritius fody (Foudia rubra). The kestrel and parakeet were both nearly lost entirely in the 1970s and 1980s respectively, having suffered severe population bottlenecks, but all three species have benefitted from successful recovery programmes. I analysed breeding success using generalised linear mixed models and analysed survival probability using capture-mark-recapture models. Established weather indices were adapted for use in this study, including indices to quantify extreme rainfall, droughts and tropical cyclone activity. Trends in weather indices at key conservation sites were also analysed.

The results for the Mauritius kestrel add to a body of evidence showing that precipitation is an important limiting factor in its demography and population dynamics. The focal population in the Bambous Mountains of eastern Mauritius occupies an area in which rainfall is increasing. This trend could have implications for the population, as my analyses provide evidence that heavy rainfall during the brood phase of nests reduces breeding success, and that prolonged spells of rain in the cyclone season negatively impact the survival of juveniles. This probably occurs through reductions in hunting efficiency, time available for hunting and prey availability, so that kestrels are unable to capture enough prey to sustain themselves and feed their young (Nicoll et al. 2003, Senapathi et al. 2011). Exposure to heavy and prolonged rainfall could also be a direct cause of mortality through hypothermia, especially for chicks if nests are flooded (Senapathi et al. 2011). Future management of this species may need to incorporate strategies to mitigate the impacts of increasing rainfall.

References:

Fordham, D. A. and Brook, B. W. (2010) Why tropical island endemics are acutely susceptible to global change. Biodiversity and Conservation 19(2): 329‒342.

Jentsch, A. and Beierkuhnlein, C. (2008) Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Comptes Rendus Geoscience 340: 621‒628.

Nicoll, M. A. C., Jones, C. G. and Norris, K. (2003) Declining survival rates in a reintroduced population of the Mauritius kestrel: evidence for non-linear density dependence and environmental stochasticity. Journal of Animal Ecology 72: 917‒926.

Senapathi, D., Nicoll, M. A. C., Teplitsky, C., Jones, C. G. and Norris, K. (2011) Climate change and the risks associated with delayed breeding in a tropical wild bird population. Proceedings of the Royal Society B 278: 3184‒3190.

A week at COP23

From the 6th -17th of November the UNFCCC’s (United Nation Framework Convention on Climate Change) annual meeting or “Conference of the Parties” – COP took place. This year was COP23 and was hosted by Bonn in the UN’s world conference centre with Fiji taking the presidency.

IMG_20171106_123155780

Heading into the Bonn Zone on the first day of the COP. The Bonn Zone was the part of the conference for NGO stands and side events.

As part of the Walker Institutes Climate Action Studio another SCENARIO PhD and I attended the first week of the COP while students back in Reading participated remotely via the UNFCCC’s YouTube channel and through interviews with other participants of the COP.

There are many different components to the COP, it is primarily the meeting of a number of different international Climate agreements with lots of work currently being done on the implementation on the Paris Agreement. However it is also a space where many different civil society groups doing work connected to or impacted by climate change come together, to make connections with other NGOs as well as governments. This is done in an official capacity within the “exhibition zone” of the conference and with a vast array of side events taking place throughout the two weeks. Outside of these official events there are also many demonstrations both inside and outside of the conference space.

Demonstrations in the Bonn Zone

As an observer I was able to watch some of the official negotiations. On the Wednesday I attended the SBSTA (Subsidiary Body for Scientific and Technological Advice) informal consultation on research and systematic observations. It was an illuminating experience to see the negotiation process in action. At times it was frustrating to see how picky it feels like the negotiation teams can be, however over the week I did have a newfound appreciation for the complexity of the issues that are having to be resolved. This meeting was based on writing a short summary of the IPCC report and other scientific reports used by the COP, and so was less politically charged than a lot of the other meetings. However this didn’t stop an unexpected amount of debate over whether to include examples such as carbon-dioxide concentrations.

One of the most useful ways to learn about the COP was by talking to the different people and groups who we met at COP. It was interesting to see the different angles with which people were approaching the COP. From researchers who were observing the political process, to environmental and human rights NGO’s trying to get governments to engage with issues that they’re working on.

Interviewing other COP participants at the Walker Institutes stand

A particular highlight was the ex-leader of the Green Party Natalie Bennett, she spoke with us and the students back in Reading about a wide range of topics, from women’s involvement in the climate movement to discussing my PhD.

Kelly Stone from Action Aid provided a great insight into how charities operate at the COP. She spoke of making connections with other charities, often there are areas of overlap between their work but on other issues they had diverging opinions. However these differences have to be put aside to make progress on their shared interests. Kelly also discussed how it always amazes her that people are surprised that everyone who attends COP does not agree on everything, “we’re not deciding if climate change is real”. The issues being dealt with at the COP are complex dealing with human rights, economics, technology as well as climate change. Often serious compromises have to be made and this must be done by reaching a consensus between all 197 Parties to the UNFCCC.

To read more about the student experience of COP and summaries of specific talks and interviews you can view the COP CAS blog here. You can also read about last years COP on this blog here.

Clockwise from top left: The opening on the evening of Monday 6th November showed Fiji leaving its own mark as the President of the conference. The Norwegian Pavilion had a real Scandi feel, while the Fiji Pavilion transported visitors to a tropical island.