This article was originally posted on the author’s personal blog.
Reproducing the result of a scientific experiment is necessary to establish trust, and reproducibility has long been a key part of the scientific method. Traditionally, an experiment could be repeated by following the method documented by the original scientists: setting up apparatus, taking measurements, and so on. If the method was sufficiently well documented then it was, perhaps, likely that the original results could be reproduced. These ‘wet lab’ experiments continue today, but many experiments are now performed entirely on computers. Such computational experiments involve no physical apparatus, but merely the processing of input data files through some scientific software before writing more data files for later analysis and plotting.
Repeating computational experiments is particularly difficult because, before any results can be obtained, there are many pieces of software apparatus that must be assembled: we must install an operating system, choose the correct version of our programming language and all the necessary scientific libraries, and we must use input parameters that are identical to those used in the original experiment. Assembling any of these pieces incorrectly might lead to subtly incorrect results, obviously incorrect results, or a failure to obtain any results at all. All this places a burden on the original scientists to document every piece of software, its version number and input parameters, and places a burden on the scientist wishing to reproduce the results.
There are a variety of tools that help to relieve this burden by automating the process of conducting computational experiments. Singularity is one such tool, having been purpose-built for automating computational experiments. A scientist creates a single configuration file that provides all the information Singularity needs to assemble the pieces of software apparatus and perform the experiment. This way, instead of writing a ‘method’ section that is only human-readable, the scientist has written a configuration file that is both human-readable and machine-readable. Using this configuration, Singularity will create an image file with all the correct versions of scientific software pre-installed. The scientist can verify their work by reproducing their experiment themselves, and they can run the same experiment just by copying the image file between their personal laptop, office workstation, or their institution’s HPC cluster. And they can send their Singularity configuration file and image files to other scientists, or they can obtain a DOI by uploading the files to Zenodo, making their computational experiments citeable in the same way as their journal publications.
I’ve used Singularity to run my own atmospheric simulations using the OpenFOAM computational fluid dynamics software. While my results have yet to be reproduced by others, I regularly use Singularity to reproduce my own results on my laptop, university desktop and AWS cloud compute servers, giving me confidence that my software and my results are robust. Whenever I’ve been stuck, the friendly Singularity developers have been quick to help out on twitter. But overall, I’ve found Singularity to be easy to use, and anyone that is familiar with git commands should feel right at home using it. Give it a try!

A true revolutionary in the field of theoretical physics and abstract algebra, Amelie Emmy Noether was a German-born inspiration thanks to her perseverance and passion for research. Instead of teaching French and English to schoolgirls, Emmy pursued the study of mathematics at the University of Erlangen. She then taught under a man’s name and without pay because she was a women. During her exploration of the mathematics behind Einstein’s general relativity alongside renowned scientists like Hilbert and Klein, she discovered the fundamentals of conserved quantities such as energy and momentum under symmetric invariance of their respective quantities: time and homogeneity of space. She built the bridge between conservation and symmetry in nature, and although Noether’s Theorem is fundamental to our understanding of nature’s conservation laws, Emmy has received undeservedly small recognition throughout the last century.
Claudine Hermann is a French physicist and Emeritus Professor at the École Polytechnique in Paris. Her work, on physics of solids (mainly on photo-emission of polarized electrons and near-field optics), led to her becoming the first female professor at this prestigious school. Aside from her work in Physics, Claudine studied and wrote about female scientists’ situation in Europe and the influence of both parents’ works on their daughter’s professional choices. Claudine wishes to give girls “other examples than the unreachable Marie Curie”. She is the founder of the Women and Sciences association and represented it at the European Commission to promote gender equality in Science and to help women accessing scientific knowledge. Claudine is also the president of the European Platform of Women Scientists which represents hundreds of associations and more than 12,000 female scientists.
For most people being handpicked to be one of three students to integrate West Virginia’s graduate schools would probably be the most notable life achievements. However for Katherine Johnson’s this was just the start of a remarkable list of accomplishments. In 1952 Johnson joined the all-black West Area Computing section at NACA (to become NASA in 1958). Acting as a computer, Johnson analysed flight test data, provided maths for engineering lectures and worked on the trajectory for America’s first human space flight.
Women however were not allowed on such ships, thus Marie Tharp was stationed in the lab, checking and plotting the data. Her drawings showed the presence of the North Atlantic Ridge, with a deep V-shaped notch that ran the length of the mountain range, indicating the presence of a rift valley, where magma emerges to form new crust. At this time the theory of plate tectonics was seen as ridiculous. Her supervisor initially dismissed her results as ‘girl talk’ and forced her to redo them. The same results were found. Her work led to the acceptance of the theory of plate tectonics and continental drift.
Ada Lovelace was a 19th century Mathematician popularly referred to as the “first computer programmer”. She was the translator of “Sketch of the Analytical Engine, with Notes from the Translator”, (said “notes” tripling the length of the document and comprising its most striking insights) one of the documents critical to the development of modern computer programming. She was one of the few people to understand and even fewer who were able to develop for the machine. That she had such incredible insight into a machine which didn’t even exist yet, but which would go on to become so ubiquitous is amazing!


As a student, being an RMetS member can lead to conversations that could develop your career and bring unexpected opportunities. This has been greatly enhanced with the RMetS mentoring scheme.
For a student, the highlight in the RMetS calendar is the annual student conference. Every year, sixty to eighty students come together to present their work and develop professional relationships that continue for years to come. This year’s conference is hosted at the University of York on the 5th and 6th July 2018 (
Other benefits to becoming an RMetS student member include eligibility to the 







