With thanks to all my helpers who enabled the week to go smoothly! Adam Bateson, Sally Woodhouse, Kaja Milczewska and Agnieszka Walenkiewicz
Each year PhD students in the Department of Meteorology invite a distinguished scientist to spend a week with us.This year we invited Prof. Cecilia Bitz, who visited between the 28th-31st May. Cecilia is based at the University of Washington, Seattle.
Cecilia’s research interests are the role of sea ice in the climate system, and high latitude climate and climate change. She has also done a lot of work on the predictability of Arctic sea ice, and is involved in the Sea Ice Prediction Network.
The week began with a welcome reception in the coffee area, introducing Cecilia to the department, followed by a seminar by Cecilia on ‘Polar Regions as Sentinels of Different Climate Change’. The seminar predominantly focused on Antarctic sea ice, and the possible reasons why Antarctic sea ice behaviour is so different to the Arctic. Whilst Arctic sea ice has steadily declined we have seen Antarctic sea ice expansion over the past four decades, with extreme Antarctic sea ice extent lows since 2016.
Throughout the week Cecilia visited a number of the research groups, including Mesoscale, HHH (dynamics) and Cryosphere, where PhD students from each group presented to her, giving a taste of the range of PhD research within our department.
Cecilia gave a second seminar later in the week in the Climate and Ocean Dynamics (COD) group meeting, this time focusing on the other pole, ‘Arctic Amplification: Local Versus Remote Causes and Consequences’. Cecilia discussed her work quantifying the role of feedbacks in Arctic Amplification, how they compare with meridional heat transports, and what influence Arctic warming has on the rest of the globe.
Photo Credit: Cecilia Bitz
On Wednesday afternoon the normal PhD group slot consisted of a career discussion, with Cecilia. Cecilia shared some of her career highlights with us, including extra opportunities she has taken such as doing some fieldwork in Antarctica and working for the charity, Polar Bears International, her insights and advice from her own experiences, as well as about post-doctoral opportunities in the US. A few of my personal take-aways from this session were to try give yourself space to learn one new thing at a time in your career (e.g. teaching, writing proposals, supervising etc). Try to work on a range of problems, and keep your outlook broad and open to new ideas and approaches. Take opportunities when they appear, such as fieldwork or short projects/collaborations.
A small group of PhDs also met with her on the Friday to have an informal discussion about climate policy. In particular about her experiences speaking to the US senate, being a part of the IPCC reports and about the role of scientists in speaking about climate change, and whether we have a responsibility to do so.
Thursday evening the PhDs took Cecilia to Zero Degrees (a very apt choice for a polar researcher!), and enjoyed a lovely evening chatting over pizza and beer.
The week ended with a farewell coffee morning on Friday, where we gave Cecilia some gifts to thank her for giving us her time this week including some tea, chocolates, a climate stripes mug and a framed picture of us…
All the PhDs had a great week. We hope Cecilia enjoyed her visit as much as we did!
PhD students with Cecilia Bitz before the Careers Discussion.
Figure 1: November Antarctic sea ice extent values, showing a small increasing trend. Source: NSIDC
Over the past forty years a small increasing trend in Antarctic sea ice extent has been observed. This is poorly understood, and currently not captured by global climate models which typically simulate a net decrease in Antarctic sea ice extent (Turner et al. 2013). The length of our observational time series in combination with our lack of confidence in global climate model results makes it difficult to assess whether the recent decline of Antarctic sea ice observed in 2016 and 2017 is the start of a new declining trend or just part of natural variability.
The net increase in Antarctic sea ice extent is the sum of stronger, but opposing, regional and highly seasonal trends as shown in Figure 2 (Holland, 2014). The trends grow throughout the spring resulting in the maximum trends in the summer, decaying away throughout the autumn to give negligible trends in the winter. This seasonality implies the role of feedbacks in modulating the observed trends.
Figure 2: Seasonal maps of sea ice concentration trends from Holland, P. (2014). A-B stands for Amundsen-Bellingshausen Seas.
We have used a highly simplified coupled sea ice—mixed layer model (a schematic is shown in Figure 3) as a tool to help quantify and compare the importance of different feedbacks in two contrasting regions of the Southern Ocean. The Amundsen Sea, which has warm shelf waters, atmospheric conditions that are relatively warm with a high snowfall rate and a diminishing sea ice cover. And the Weddell Sea, which has cold saline shelf waters, cold and dry atmospheric conditions and an expanding sea ice cover.
Figure 3. Schematic of the 1D sea ice-mixed layer model, adapted from Petty et al. (2013).
We have carried out simulations where we denied different feedbacks in combination with perturbing the surface air temperatures, and compared the results with simulations where the feedback is enabled, and can to respond to the surface air temperature perturbation. We found that in the Weddell Sea the feedback responses were generally smaller than the response of the ice cover to the surface air temperature. However in the Amundsen Sea, we found that the ice cover was very sensitive to the depth of the ocean mixed layer which determines the size of the ocean heat flux under the ice. Whenever the atmosphere warmed we found that the ocean heat flux to the ice decreased (due to a shallower mixed layer), and this acted against the atmospheric changes, buffering changes in the ice volume.
Using a simple model has made it easier to understand the different processes at play in the two regions. However, in order to try to better to understand how these feedbacks link back to the regional trends we will also need to consider spatial variability, which may act to change the importance of some of the feedbacks. Incorporating what we have learnt using the 1D model, we are now working on investigating some of the same processes using the CICE sea ice model, to explore the importance and impact of spatial variability on the feedbacks.
Email: r.frew@pgr.reading.ac.uk
References
Turner et al. (2013), An initial assessment of Antarctic sea ice extent in the CMIP5 models, J. Climate, 26, 1473-1484, doi:10.1175/JCLI-D-12-00068.1
Holland, P. R. (2014), The seasonality of Antarctic sea ice trends, Geophys. Res. Lett., 41, 4230–4237, doi:10.1002/2014GL060172.
Petty et al. (2013), Impact of Atmospheric Forcing on Antarctic Continental Shelf Waters, J. Phys. Ocean., 43, 920-940, doi: 10.1175/JPO-D-12-0172.1
Between the 11th-16th March myself and four other PhDs and post docs attended the Ocean in Weather and Climate (OiWC) course at the Met Office, Exeter. This NERC advanced training course was aimed at PhDs, postdocs and beyond. It provided a great opportunity to spend a week meeting other Oceanography researchers at varying stages of their career, and to expand your understanding of the oceans role in climate beyond the scope of your own work.
The week kicked off with an ice breaker where we had do some ‘Scientific speed dating’, chatting to other participants about: Where are you from? What do you work on? What is your main hobby? What is the biggest question in your field of research? This set the tone for a very interactive week full of interesting discussions between all attendees and speakers alike. Course participants were accommodated at The Globe Inn situated in Topsham, a cute village-sized town full of pastel-coloured houses, cosy pubs, art galleries, and beautiful riverside walks to stretch your legs in the evenings.
The days consisted of four 1.5 hour sessions, split up by caffeine and biscuit breaks to recharge before the next session.
Topics covered in the lecture-style talks included…
Dynamical Theory
Modelling the Ocean
Observations
Ocean-atmosphere coupling
Air-sea fluxes
High Resolution Ocean modelling in coupled forecast systems
The Meridional Overturning Circulation
The Southern Ocean in climate and climatic change
Climate variability on diurnal, seasonal, annual, inter-annual, decadal timescales
Climate extremes
Climate sensitivity, heat uptake and sea level.
A recurring figure of the week…. taken from Helene Hewitt’s talk on high resolution ocean modelling showing ocean surface currents from HadGEM3-based global coupled models at different resolutions (eddy resolving, eddy permitting and eddy parameterised).
All the talks were very interesting and were followed by some stimulating discussion. Each session provided an overview of each topic and an indication of the current research questions in each area at the moment.
In the post lunch session, there were group practical sessions. These explored observational ARGO float data and model output. The practicals, written in iPython notebooks, were designed to let us play with some data, giving us a series of questions to trigger group discussions to deepen understanding of topics covered that morning.
The course also included some ‘softer’ evening talks, giving research career advice in a more informal manner. Most evenings were spent exploring the lovely riverside walks and restaurants/pubs of Topsham. The final evening was spent all together at the Cosy Club in Exeter, rounding off a very interesting and enjoyable week!
When sea water freezes it forms sea ice, a composite of ice and brine. Sea ice exhibits varying structural, thermodynamic and mechanical properties across a range of length- and time-scales. It can be subcategorised into numerous different types of sea ice depending on where is grows and how old it is.
Different sea ice growth processes and types 1.
However, climate models do not simulate the evolution of floes (they model floes as cylindrical) or the floe size distribution, which has implications for ice melt rates and exchange of heat with the atmosphere and ocean. Sea ice also hosts algae and small organisms within brine channels in the ice, which can be important for nutrient cycles. This is a developing area of earth system modelling.
Schematic of life within brine channels in sea ice 2.
How much complexity do global climate models need to sufficiently model the interactions of sea ice with the ocean and atmosphere?
The representation of sea ice in global climate models is actually very simple, with minimal sea ice types and thickness categories. The main important feature of sea ice for global climate models is its albedo, which is much greater than that of open water, making it important for the surface energy balance. So, it is important to get the correct area of sea ice. Global climate models need sea ice:
to get the correct heat exchange with the atmosphere and ocean
to get a realistic overturning circulation in the ocean.
because salt release during sea ice growth is important for the ocean salinity structure, and therefore important to get the correct amount of sea in/near deep water formation sites.
sea ice is not important for sea level projections.
So, do the complex features of sea ice matter, or are simple parameterisations sufficient?
Schematic showing some dynamic features of sea ice 3.
Which leads to a lot more questions…
Where does the balance between sufficient complexity and computational cost lie?
Does adding extra model complexity actually make it harder to understand what the model is doing and therefore to interpret the results?
Do climate models need any further improvements to sea ice in order to better simulate global climate? There is still large uncertainty surrounding other climate model components, such as clouds and ocean eddies, which are believed to explain a lot of the discrepancy between models and observations, particularly in the Southern Ocean.
A lot of these questions depend on the scientific question that is being asked. And the question is not necessarily always ‘how is global climate going to change in the future’. Sea ice is fascinating because of its complexity, and there are still many interesting questions to investigate, hopefully before it all melts!
Images clockwise from top left: grease ice 4, pancake ice 5, surface melt ponds 6, ice floes 7.
The Future Developments in Climate Sea Ice Modelling Workshop
This blog stems from a one day workshop I attended on ‘Future developments in climate sea ice modelling’ at the Isaac Newton Centre as part of a four month programme on the ‘Mathematics of Sea Ice Phenomena’. The format of the day was that three different strands of sea ice researchers gave 40 min talks giving their strand’s point of view of current sea ice developments and what the focus should be for sea ice modelers, each followed by 40 mins of open discussion with the audience.
The three (very good!) talks were:
Dirk Notz: What do climate models need sea ice for? A top-down, system level view of what sea ice models should produce from the perspective of a climate modeller.
Cecilia Bitz: What sea ice physics is missing from models? A bottom-up view of what is missing from current sea ice models from the perspective of a sea ice scientist.
Elizabeth Hunke: What modelling approaches can be used to address the complexity of sea ice and the needs of climate models?
The Fluid Dynamics of Sustainability and the Environment (FDSE) residential summer school runs every summer for two weeks, alternating between Cambridge University and Ecole polytechnique, which run the summer school in partnership. I attended this years hosted by Ecole polytechnique, situated to the South of Paris. 40 PhD students attended from institutes around the world, all working on a range of topics who want to learn more about environmental fluid dynamics.
The lectures covered topics on fundamentals of fluid dynamics, flow instabilities, environmental fluid dynamics, cryosphere, atmosphere, physical oceanography and renewable energy. The lectures went at a very fast pace (approximately triple speed!), aiming to familiarise us with as many concepts as possible in the two weeks, resulting in everyone taking home a large overflowing folder full of lecture notes to refer back to in the future.
We were kept very busy throughout the two weeks. Each day started with breakfast (coffee and croissants) between 7.30-8.20 am, followed by two back to back lectures 8.30-10.30 am. There was then half an hour for everyone to fuel their brain with coffee and (warm!) mini pastries before another hour lecture before lunch break. Lunch was roughly 12-1.30 pm, although typically there were so many interesting questions after each lecture that we ran progressively later relative to the schedule meaning that I think we only actually started lunch on time on the first day. There were also a number of guest speakers speaking on topics such as public engagement, climate policy, meteorology on mars and air quality.
After lunch we had the final lecture of the day, followed by a short break before numerical sessions and lab experiments, which ran until roughly 6 pm. These sessions gave us the chance to really learn about a particular topic in more detail and to have a more hands on experience with some of the material being lectured. My labs were on tidal energy where we explored the energy output and efficiency of tidal turbines, and Art and Science, which encouraged us to engage with Science in new and more playful ways and also to challenge us to look at it differently.
However the day didn’t end after the labs, the evenings were also jam packed! The first evening was a poster session, giving us all the opportunity to learn more about what all of the other students work on and to mingle. Other evenings consisted of learning to row sessions, visits to the observatory, movie nights and discussions about the ‘science’ in The Day After Tomorrow movie and barbeques enjoying the warm light evenings (definitely missing those now I’m back in Reading).
During the weekend sandwiched in the middle of the two weeks, we were all transferred to a hostel in the centre of Paris, setting us all up perfectly for some weekend sightseeing in Paris. On the Friday evening there was a boat party reception on the Siene, supplying us all with lots of wine, many difference French cheeses to sample and a lively dance floor.
The school ended on Friday July 14th, Bastille Day. After a morning presenting a few slides on the labs we had completed in groups to share what we had learnt, we travelled into the centre of Paris ready for an evening enjoying the spectacular Bastille Day fireworks around the Eiffel tower, ending the summer school with a bang.
Personally the main take away from the summer school was not to learn the entirety of the lecture content, but to become familiar with a wide range of topics gain more hands on experience of laboratory experiments and to have a (rather large) folder full of lecture notes to refer back to whenever I stumble across a particular concept again in the future. And of course, it was great having the opportunity to meet lots of other PhD students from around the world working on related topics and to be able to discuss, engage and get to know each other over the two weeks. I would like to thank all of the organisers and lecturers of the summer school for a really interesting and enjoyable two weeks!
Science is a community effort, requiring collaboration and lots of different people providing different parts of the jigsaw to try to understand more and more of the full picture. Despite a lot of research being carried out individually in a lab, or at a desk, no one individual can do everything themselves, no matter how much of a genius they are. Sharing, discussing and debating are key to the progression of scientific ideas, and this ethos is something large scientific conferences like EGU cultivates.
Attending EGU for the first time as a PhD student was both an exciting and overwhelming experience due to its shear size and number of people. This year 14,496 people from 107 countries participated, giving 4,849 talks, 11,312 posters and 1,238 PICO presentations throughout the week!
With 649 scientific sessions running throughout the week, deciding how to spend your day was a significant challenge in itself! The EGU website and app allowed you to create a personal programme, cutting down the number of entire printed programmes being printed, aiming to try to make EGU slightly more environmentally friendly.
Vienna international conference centre, image courtesy of Matt Priestley.
A ‘typical’ day at EGU consisted of something like…
7-8am: Wake up, shower and breakfast and then hop on the U-bahn to the conference centre. Pick up a EGU Today newsletter on the way into the centre, highlighting a few sessions happening that day that may be of general interest
8.30-10am: Division session of your choice consisting of six 15min talks. People also pick out specific talks in different sessions and hop between, especially if their work is more interdisciplinary and covers a few different sessions.
10-10.30am: Recharge with a much needed coffee break!
10.30am-12pm: Go to a debate on ‘Make Facts Great Again: how can scientists stand up for science?‘ There were a number of other topical debates throughout the week, including ‘Arctic environmental change: global opportunities and threats‘ and ‘Great Debate on Great Extinctions‘. This consisted of a short introduction from members of a panel, then questions from the floor.
12-1.30pm: Pick up something for lunch from one of the nearby bakeries or cafes around the conference centre, and sit in the nearby park and enjoy the sunshine (hopefully).
1.30-3pm: Explore the many information stands in the exhibition areas. These included publishing houses, geoscience companies, NGOs etc. Next go and vote in the EGU photograph competition:https://imaggeo.egu.eu/photo-contest/2017/, before stopping to listen to some PICO (Presenting Interactive COntent) presentations. These are very interactive sessions where speakers give a 2min overview of their work, after which people have the opportunity to go and question speakers further afterwards by a poster/couple of slides.
3-3.30pm: Tea/coffee break with cookies in the Early Career Scientists lounge.
3.30-5pm: Polar Science Career Session aimed at Early Career Scientists (there were also sessions for other divisions), consisting of an informal Q&A with a panel covering a variety of different career paths.
5-7pm: Poster sessions in the big halls with beer/juice and nibbles. These were a great opportunity for in depth discussion, and meeting other people in your field.
7-8.30pm: Early career scientist (ECS) reception with drinks and canapes, meet other ECS from all fields and chat with division leaders. This year 53% of EGU participants were ECSs, and there was a definite effort to cater for them throughout the week.
8.30-?: Dinner and drinks in Vienna town centre with peers, followed by an early night if you plan to make it to a 8.30am session tomorrow…
In addition to events highlighted, there were also a variety short courses running, for example ‘Tips and Tricks: How to Navigate EGU‘, ‘How to write a research grant‘ or ‘Rhyme your Research‘! EGU had its own official blog GeoLog, highlighting some of the events from each day: http://blogs.egu.eu/geolog/.
However, EGU is 5 days long, and despite the impressive offering of sessions being put on it would be a shame to go to Vienna and only see the conference centre… The odd extended lunch break to take the U-bahn (included as part of the entrance to the conference) to walk around the centre, or an afternoon off to explore a gallery or museum, or simply sit in one of the beautiful parks or cafes to enjoy some coffee and Sachertorte is definitely a must to recharge and finish off the week!
The aims of the NERC funded BAS run course, “A skills framework for delivering safe and effective fieldwork in the polar regions”, were to learn how to safely and effectively plan and carry out fieldwork at the poles. And in doing so, to give 16 early career polar scientists across a range of disciplines the opportunity to go to the Arctic and learn practical fieldwork skills that we don’t pick up from our day to day office work.
The first part took place at Madingley Hall in Cambridge where we were briefed as an entire cohort on planning, logistics, instrumentation, risk assessment, GPS mapping, health and safety, and were exceedingly well fed as part of the process….
The sunny early morning views that greeted us into Ny Ålesund.
Next we set off to put what we had learnt into practice in Ny Ålesund, on the Island of Spitzbergen (translates as ‘pointy mountains’) in Svalbard. Ny Ålesund is a small international village predominantly inhabited by scientists, with a peak population in summer of around 150, and a hardy winter population of 35 toughing out the minimal daylight hours and chilling temperatures, which reach minimums of around -20°C! Our journey began with three flights, and a stopover in Longyearbyen, also known as Santa Claus town, although it looks a lot more industrial than the name implies. We then had a 3.30am start which was aided by the 24 hour daylight to get the boat to Ny Ålesund. After 4 hours of queasiness we arrived at the NERC UK Arctic research station in Ny Ålesund.
The group all kitted out in front of the NERC UK Arctic Research Station. Photos courtesy of Simon Morley.
The first task we had to do after arrival was the rifle training course. This felt like a dangerous activity to be doing at 2pm in the afternoon after a 3.30am start. However it is safe to say we were all sufficiently awake after the first gun shot… We never left the NERC Arctic base without a massive rucksack full of layers, food, water, flask etc and most importantly a rifle and flare gun in case of running into a polar bears. As we are essentially trespassing on the bears’ territory, it is up to us to avoid disturbing them and to use rifles for self-defence as a last resort.
Terrestrial wildlife around Ny Ålesund. The greatest wildlife threat we faced was the cheeky Arctic fox stealing our sandwiches!
In Ny Ålesund you are very far removed from civilisation, even via digital means as there is no wifi (due to a large experiment detecting quasars) or phone signal. Therefore life in Ny Ålesund feels timeless, as outside events that rampage on social media feel far removed and irrelevant. However signatures of global warming are evident, with the extent of glaciers noticeably retreating each year, and sea ice becoming a rarer and rarer occurrence in the fjord within the living memory of residents of Ny Ålesund.
From left to right: View of Ny Ålesund, the closest we came to a polar bear in the doorway of the mess building, old hut from the mining industry.
The past mining infrastructure is evident everywhere, and classified as ‘heritage’, meaning that despite thinking of them as eyesores, in the otherwise immaculate views the run down infrastructure is actually protected as part of Ny Ålesund’s history. The NERC UK Arctic base was very cosy, we definitely weren’t roughing it like all those early polar explorers! The base is run by station manager Nick Cox, who was full of stories about everything and anything. Most evenings ended with everyone staying at the base gathering together for storytime with Nick in the living room of the UK Arctic base. Everyone in Ny Ålesund went to the mess building (best view I’ve ever had whilst eating breakfast!) in the centre of Ny Ålesund for meals, and on Saturdays everyone makes more of an effort to change out of work clothes and enjoy good food and wine together before heading to the small pub which opens on Saturday nights for people to gather to drink, chatter and dance.
Every time we left the UK station we had to take an enormous rucksack filled with food (packed lunch and lots of snacks, Mars bars disappeared like gold dust), waterproofs, spare layers, emergency blanket, first aid kit, temporary shelters, spare batteries for any equipment needed, flare gun, rifle, bullets, a satellite phone (one between the group), radio (at least one for each separate group). Keeping in contact via radio is very important, even if our group was going to be just 15 mins late we had to radio in and let the people at the station now so they can amend the signing out book. There was also a radio line for all of the stations in Ny Ålesund, so everybody would know if somebody was in trouble or extra help was needed. All the extra layers were essential. In just the five days we were there, we saw sun, rain, snow, sometimes all in one day! Preparing for all eventualities and all of the `what ifs’ is essential for polar fieldwork.
We had two main projects that required fieldwork planning and execution. The first was a two day marine biology project (led by Simon Morley from BAS) which was undertaken in two boats followed up by lab work. We took sediment grabs, plankton nets, CTD profiles (measurements of salinity, temperature and density), put down traps overnight. The aim was to investigate the difference between near rivers and near glaciers, and build up a picture of the food web there. Understanding the small marine creatures at the base of the food web and their temperature tolerance has important implications for larger marine and terrestrial creatures higher up the chain.
Left to right, getting our hands dirty sieving the sediment samples on the boat, putting on the immersion suits before getting onto the smaller boat in case of falling in! Photos courtesy of Simon Morley and Ed King.
The second two day task (led by Ed king from BAS) was to investigate the retreat of a glacier about 4-5km from Ny Ålesund called Midtre Lovénbreen. We carried out was to do a ground penetrating radar survey along and across the nearest glacier to Ny Ålesund to measure the ice thickness. Also, we mapped out the snout of the glacier and took photos to compare the glacier to previous years. A 15-20m retreat of the snout of the glacier relative to last year was measured!
Clockwise from left: Setting up the geophysics kit for a transect on the glacier, Midtre Lovénbreen in 1999, Midtre Lovénbreen September 2016. Glacier photos courtesy of Ed King.
The five or so days we had in Ny Ålesund flew by and before we knew it, it was time for us all to take the (very choppy) boat journey back to Longyearbyen before heading back to the UK. I really, really enjoyed the course, and I would highly recommend to any PhDs or Postdocs who study the poles to consider applying for the course in 2017!
Thanks to everyone at BAS involved in organising the course, in particular Alistair Crane, Blair Fyffe, Simon Morley, Ed King, Nick cox, and of course Ali Teague for organising all of the logistics and ensuring we all got there and back as smoothly as possible!