The Circumglobal Teleconnection and its Links to Seasonal Forecast Skill for the European Summer

Email: j.beverley@pgr.reading.ac.uk

Recent extreme weather events such as the central European heatwave in 2003, flooding in the UK in 2007, and even the recent dry summer in the UK in 2018, have highlighted the need for more accurate long-range forecasts for the European summer. Recent research has led to improvements in European winter seasonal forecasts, however summer forecast skill remains relatively low. One potential source of predictability for Europe is the Indian summer monsoon, which can affect European weather via a global wave train known as the “Circumglobal Teleconnection” (CGT).

figure1
Figure 1: One-point correlation between 200 hPa geopotential height at the base point (35°-40°N, 60°-70°E) and 200 hPa geopotential height elsewhere in the ERA-Interim (1981–2014) reanalysis dataset, for August. The boxes indicate the regions defined as the “centres of action” of the CGT – these are North Pacific (NPAC), North America (NAM), Northwest Europe (NWEUR), Ding and Wang (D&W) and East Asia (EASIA).

The CGT was first identified by Ding and Wang (2005) as having a major role in modulating observed weather patterns in the Northern Hemisphere summer. Using a 200 hPa geopotential height index centred in west-central Asia (35°-40°N, 60°-70°E), they constructed a one-point correlation map of geopotential height with reference to this index (reproduced in Figure 1). From this, they identified a wavenumber-5 structure where the pressure variations over the Northeast Atlantic, East Asia, North Pacific and North America are all nearly in phase with the variations over west-central Asia (these are known as the “centres of action”). They also showed that the CGT is associated with significant temperature and precipitation anomalies in Europe, so accurate representation this mechanism in seasonal forecast models could provide an important source of subseasonal to seasonal forecast skill.

The model used here is a version of the European Centre for Medium-Range Weather Forecasts (ECMWF)’s coupled seasonal forecast model. Reforecasts are initialised on 1st May and are run for four months, so cover May-August, with start dates from 1981-2014. The skill of the model 200 hPa geopotential height is shown in Figure 2, defined as the correlation between the model ensemble mean and ERA-Interim. The model has good skill in May (to be expected given that the reforecasts are initialised in May) but in June, July and August areas of zero or negative correlation develop across much of the northern hemisphere extratropics. The areas of reduced skill align closely with the location of the centres of action of the CGT shown in Figure 1, suggesting that there is a link between the model skill and the model representation of the CGT.

figure2
Figure 2: Model ensemble mean skill for 200 hPa geopotential height as defined as the correlation between ERA-Interim and model ensemble mean for (a) May (b) June (c) July and (d) August

To determine how well the model represents the CGT, Figure 3 shows the correlation between the D&W region and the other centres of action of the CGT, as defined in Figure 1. Focussing on August (as August has the strongest CGT pattern) it can be seen that the model correlations, indicated by the box and whisker plots, are weaker than in observations (red diamond) for the D&W vs. North Pacific (NPAC), North America (NAM) and Northwest Europe (NWEUR) regions. This indicates that the model has a weak representation of the wavetrain associated with the CGT.

figure3
Figure 3: Distribution of correlation coefficients for the D&W Index correlated against the other centres of action of the CGT. The box plots represent the upper and lower quartiles, and the whiskers extend to the 5th and 95th percentiles. The black horizontal line represents the median value and the red diamond the observed correlation coefficient from ERA-Interim.

There are likely to be several reasons for the weak representation of the CGT in the model. One important factor is the presence of a northerly jet bias in the model across much of the Northern Hemisphere. This can be seen in Figure 4, which shows the model jet biases relative to ERA-Interim in the coloured contours, and the observed zonal wind in the black contours. The dipole structure of the biases which exists across much of the hemisphere, particularly in June, July and August, indicates that the model jet stream is located too far to the north. This means that Rossby waves forced in this region will have different wave propagation characteristics to reality – they may propagate at the incorrect speed, in the wrong direction or may not propagate at all, and this is likely to be an important factor in the weak representation of the CGT in the model.

figure4
Figure 4: Model 200 hPa zonal wind bias (filled contours, m/s), defined as the model ensemble mean minus ERA-Interim zonal wind, and ERA-I 200 hPa zonal wind (black contours) for (a) May (b) June (c) July and (d) August. The location of the centres of action of the CGT are marked with white crosses.

Other potential factors involved are a poor representation of the link between monsoon precipitation and the geopotential height in west-central Asia (which was shown by Ding and Wang (2007) to be important in the maintenance of the CGT) and errors in the forcing of Rossby waves associated with the monsoon. For a more detailed explanation of these, see my paper in Climate Dynamics (Beverley et al. 2018). It seems likely that the pattern of reduced skill in Figure 2, with negative correlations located at the centres of action of the CGT, including over Europe, is related to the poor representation of the CGT in the model. This raises the question of whether an improvement in the model’s representation of the CGT would lead to an improvement in forecast skill for the European summer. To address this question, sensitivity experiments have been carried out, in which the observed circulation is imposed in several centres of action along the CGT pathway to explore the impact on forecast skill for European summer weather.

References

Beverley, J. D., S. J. Woolnough, L. H. Baker, S. J. Johnson and A. Weisheimer, 2018: The northern hemisphere circumglobal teleconnection in a seasonal forecast model and its relationship to European summer forecast skill. Clim. Dyn. https://doi.org/10.1007/s00382-018-4371-4

Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the northern hemisphere summer. J. Clim. 18, 3483–3505.  https://doi.org/10.1175/JCLI3473.1

Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Clim. 20, 3751-3767. https://doi.org/10.1175/JCLI4221.1

Atmospheric blocking: why is it so hard to predict?

Atmospheric blocks are nearly stationary large-scale flow features that effectively block the prevailing westerly winds and redirect mobile cyclones. They are typically characterised by a synoptic-scale, quasi-stationary high pressure system in the midlatitudes that can remain over a region for several weeks. Blocking events can cause extreme weather: heat waves in summer and cold spells in winter, and the impacts associated with these events can escalate due to a block’s persistence. Because of this, it is important that we can forecast blocking accurately. However, atmospheric blocking has been shown to be the cause of some of the poorest forecasts in recent years. Looking at all occasions when the ECMWF model experienced a period of very low forecast skill, Rodwell et al. (2013) found that the average flow pattern for which these forecasts verified was an easily-distinguishable atmospheric blocking pattern (Figure 1). But why are blocks so hard to forecast?

Fig_1_blogjacob
Figure 1:  Average verifying 500 hPa geopotential height (Z500) field for occasions when the ECMWF model experienced very low skill. From Rodwell et al. (2013).

There are several reasons why forecasting blocking is a challenge. Firstly, there is no universally accepted definition of what constitutes a block. Several different flow configurations that could be referred to as blocks are shown in Figure 2. The variety in flow patterns used to define blocking brings with it a variety of mechanisms that are dynamically important for blocks developing in a forecast (Woollings et al. 2018). Firstly, many phenomena must be well represented in a model for it to forecast all blocking events accurately. Secondly, there is no complete dynamical theory for block onset and maintenance- we do not know if a process key for blocking dynamics is missing from the equation set solved by numerical weather prediction models and is contributing to the forecast error. Finally, many of the known mechanisms associated with block onset and maintenance are also know sources of model uncertainty. For example, diabatic processes within extratropical cyclones have been shown to contribute substantially to blocking events (Pfahl et al. 2015), the parameterisation of which has been shown to affect medium-range forecasts of ridge building events (Martínez-Alvarado et al. 2015).

Fig_2_blogjacob
Figure 2: Different flow patterns, shown using Z500 (contours), that have been defined as blocks. From Woollings et al. (2018).

We do, however, know some ways to improve the representation of blocking: increase the horizontal resolution of the model (Schiemann et al. 2017); improve the parameterisation of subgrid physical processes (Jung et al. 2010); remove underlying model biases (Scaife et al. 2010); and in my PhD we found that improvements to a model’s dynamical core (the part of the model used to solved the governing equations) can also improve the medium-range forecast of blocking. In Figure 3, the frequency of blocking that occurred during two northern hemisphere winters is shown for the ERA-Interim reanalysis and three operational weather forecast centres (the ECMWF, Met Office (UKMO) and the Korean Meteorological Administration (KMA)). Both KMA and UKMO use the Met Office Unified Model – however, before the winter of 2014/15 the UKMO updated the model to use a new dynamical core whilst KMA continued to use the original. This means that for the 2013/14 the UKMO and KMA forecasts are from the same model with the same dynamical core whilst for the 2014/15 winter the UKMO and KMA forecasts are from the same model but with different dynamical cores. The clear improvement in forecast from the UKMO in 2014/15 can hence be attributed to the new dynamical core. For a full analysis of this improvement see Martínez-Alvarado et al. (2018).

Fig_3_blogjacob
Figure 3: The frequency of blocking during winter in the northern hemisphere in ERA-Interim (grey shading) and in seven-day forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), the Met Office (UKMO) and the Korean Meteorological Administration (KMA). Box plots show the spread in the ensemble forecast from each centre.

In the remainder of my PhD I aim to investigate the link between errors in forecasts of blocking with the representation of upstream cyclones. I am particularly interested to see if the parameterisation of diabatic processes (a known source of model uncertainty) could be causing the downstream error in Rossby wave amplification and blocking.

Email: j.maddison@pgr.reading.ac.uk.

References:

Rodwell, M. J., and Coauthors, 2013: Characteristics of occasional poor medium-range weather  forecasts for Europe. Bulletin of the American Meteorological Society, 94 (9), 1393–1405.

Woollings, T., and Coauthors, 2018: Blocking and its response to climate change. Current Climate Change Reports, 4 (3), 287–300.

Pfahl, S., C. Schwierz, M. Croci-Maspoli, C. Grams, and H. Wernli, 2015: Importance of latent  heat release in ascending air streams for atmospheric blocking. Nature Geoscience, 8 (8), 610– 614.

Mart´ınez-Alvarado, O., E. Madonna, S. Gray, and H. Joos, 2015: A route to systematic error in forecasts of Rossby waves. Quart. J. Roy. Meteor. Soc., 142, 196–210.

Mart´ınez-Alvarado, O., and R. Plant, 2014: Parametrized diabatic processes in numerical simulations of an extratropical cyclone. Quart. J. Roy. Meteor. Soc., 140 (682), 1742–1755.

Scaife, A. A., T. Woollings, J. Knight, G. Martin, and T. Hinton, 2010: Atmospheric blocking and mean biases in climate models. Journal of Climate, 23 (23), 6143–6152.

Schiemann, R., and Coauthors, 2017: The resolution sensitivity of northern hemisphere blocking in four 25-km atmospheric global circulation models. Journal of Climate, 30 (1), 337–358.

Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136 (650), 1145–1160.

Modelling windstorm losses in a climate model

Extratropical cyclones cause vast amounts of damage across Europe throughout the winter seasons. The damage from these cyclones mainly comes from the associated severe winds. The most intense cyclones have gusts of over 200 kilometres per hour, resulting in substantial damage to property and forestry, for example, the Great Storm of 1987 uprooted approximately 15 million trees in one night. The average loss from these storms is over $2 billion per year (Schwierz et al. 2010) and is second only to Atlantic Hurricanes globally in terms of insured losses from natural hazards. However, the most severe cyclones such as Lothar (26/12/1999) and Kyrill (18/1/2007) can cause losses in excess of $10 billion (Munich Re, 2016). One property of extratropical cyclones is that they have a tendency to cluster (to arrive in groups – see example in Figure 1), and in such cases these impacts can be greatly increased. For example Windstorm Lothar was followed just one day later by Windstorm Martin and the two storms combined caused losses of over $15 billion. The large-scale atmospheric dynamics associated with clustering events have been discussed in a previous blog post and also in the scientific literature (Pinto et al., 2014; Priestley et al. 2017).

Picture1
Figure 1. Composite visible satellite image from 11 February 2014 of 4 extratropical cyclones over the North Atlantic (circled) (NASA).

A large part of my PhD has involved investigating exactly how important the clustering of cyclones is on losses across Europe during the winter. In order to do this, I have used 918 years of high resolution coupled climate model data from HiGEM (Shaffrey et al., 2017) which provides a huge amount of winter seasons and cyclone events for analysis.

In order to understand how clustering affects losses, I first of all need to know how much loss/damage is associated with each individual cyclone. This is done using a measure called the Storm Severity Index (SSI – Leckebusch et al., 2008), which is a proxy for losses that is based on the 10-metre wind field of the cyclone events. The SSI is a good proxy for windstorm loss. Firstly, it scales the wind speed in any particular location by the 98th percentile of the wind speed climatology in that location. This scaling ensures that only the most severe winds at any one point are considered, as different locations have different perspectives on what would be classed as ‘damaging’. This exceedance above the 98th percentile is then raised to the power of 3 due to damage from wind being a highly non-linear function. Finally, we apply a population density weighting to our calculations. This weighting is required because a hypothetical gust of 40 m/s across London will cause considerably more damage than the same gust across far northern Scandinavia, and the population density is a good approximation for the density of insured property. An example of the SSI that has been calculated for Windstorm Lothar is shown in Figure 2.

 

figure_2_blog_2018_new
Figure 2. (a) Wind footprint of Windstorm Lothar (25-27/12/1999) – 10 metre wind speed in coloured contours (m/s). Black line is the track of Lothar with points every 6 hours (black dots). (b) The SSI field of Windstorm Lothar. All data from ERA-Interim.

 

From Figure 2b you can see how most of the damage from Windstorm Lothar was concentrated across central/northern France and also across southern Germany. This is because the winds here were most extreme relative to what is the climatology. Even though the winds are highest across the North Atlantic Ocean, the lack of insured property, and a much high climatological winter mean wind speed, means that we do not observe losses/damage from Windstorm Lothar in these locations.

figure_3_blog_2018_new
Figure 3. The average SSI for 918 years of HiGEM data.

 

I can apply the SSI to all of the individual cyclone events in HiGEM and therefore can construct a climatology of where windstorm losses occur. Figure 3 shows the average loss across all 918 years of HiGEM. You can see that the losses are concentrated in a band from southern UK towards Poland in an easterly direction. This mainly covers the countries of Great Britain, Belgium, The Netherlands, France, Germany, and Denmark.

This blog post introduces my methodology of calculating and investigating the losses associated with the winter season extratropical cyclones. Work in Priestley et al. (2018) uses this methodology to investigate the role of clustering on winter windstorm losses.

This work has been funded by the SCENARIO NERC DTP and also co-sponsored by Aon Benfield.

 

Email: m.d.k.priestley@pgr.reading.ac.uk

 

References

Leckebusch, G. C., Renggli, D., and Ulbrich, U. 2008. Development and application of an objective storm severity measure for the Northeast Atlantic region. Meteorologische Zeitschrift. https://doi.org/10.1127/0941-2948/2008/0323.

Munich Re. 2016. Loss events in Europe 1980 – 2015. 10 costliest winter storms ordered by overall losses. https://www.munichre.com/touch/naturalhazards/en/natcatservice/significant-natural-catastrophes/index.html

Pinto, J. G., Gómara, I., Masato, G., Dacre, H. F., Woollings, T., and Caballero, R. 2014. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1002/2014JD022305.

Priestley, M. D. K., Dacre, H. F., Shaffrey, L. C., Hodges, K. I., and Pinto, J. G. 2018. The role of European windstorm clustering for extreme seasonal losses as determined from a high resolution climate model, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-165, in review.

Priestley, M. D. K., Pinto, J. G., Dacre, H. F., and Shaffrey, L. C. 2017. Rossby wave breaking, the upper level jet, and serial clustering of extratropical cyclones in western Europe. Geophysical Research Letters. https://doi.org/10.1002/2016GL071277.

Schwierz, C., Köllner-Heck, P., Zenklusen Mutter, E. et al. 2010. Modelling European winter wind storm losses in current and future climate. Climatic Change. https://doi.org/10.1007/s10584-009-9712-1.

Shaffrey, L. C., Hodson, D., Robson, J., Stevens, D., Hawkins, E., Polo, I., Stevens, I., Sutton, R. T., Lister, G., Iwi, A., et al. 2017. Decadal predictions with the HiGEM high resolution global coupled climate model: description and basic evaluation, Climate Dynamics, https://doi.org/10.1007/s00382-016-3075-x.

Baroclinic and Barotropic Annular Modes of Variability

Email: l.boljka@pgr.reading.ac.uk

Modes of variability are climatological features that have global effects on regional climate and weather. They are identified through spatial structures and the timeseries associated with them (so-called EOF/PC analysis, which finds the largest variability of a given atmospheric field). Examples of modes of variability include El Niño Southern Oscillation, Madden-Julian Oscillation, North Atlantic Oscillation, Annular modes, etc. The latter are named after the “annulus” (a region bounded by two concentric circles) as they occur in the Earth’s midlatitudes (a band of atmosphere bounded by the polar and tropical regions, Fig. 1), and are the most important modes of midlatitude variability, generally representing 20-30% of the variability in a field.

Southern_Hemi_Antarctica
Figure 1: Southern Hemisphere midlatitudes (red concentric circles) as annulus, region where annular modes have the largest impacts. Source.

We know two types of annular modes: baroclinic (based on eddy kinetic energy, a proxy for eddy activity and an indicator of storm-track intensity) and barotropic (based on zonal mean zonal wind, representing the north-south shifts of the jet stream) (Fig. 2). The latter are usually referred to as Southern (SAM or Antarctic Oscillation) or Northern (NAM or Arctic Oscillation) Annular Mode (depending on the hemisphere), have generally quasi-barotropic (uniform) vertical structure, and impact the temperature variations, sea-ice distribution, and storm paths in both hemispheres with timescales of about 10 days. The former are referred to as BAM (baroclinic annular mode) and exhibit strong vertical structure associated with strong vertical wind shear (baroclinicity), and their impacts are yet to be determined (e.g. Thompson and Barnes 2014, Marshall et al. 2017). These two modes of variability are linked to the key processes of the midlatitude tropospheric dynamics that are involved in the growth (baroclinic processes) and decay (barotropic processes) of midlatitude storms. The growth stage of the midlatitude storms is conventionally associated with increase in eddy kinetic energy (EKE) and the decay stage with decrease in EKE.

ThompsonWoodworth_Fig2a_SAM_2f_BAM(1)
Figure 2: Barotropic annular mode (right), based on zonal wind (contours), associated with eddy momentum flux (shading); Baroclinic annular mode (left), based on eddy kinetic energy (contours), associated with eddy heat flux (shading). Source: Thompson and Woodworth (2014).

However, recent observational studies (e.g. Thompson and Woodworth 2014) have suggested decoupling of baroclinic and barotropic components of atmospheric variability in the Southern Hemisphere (i.e. no correlation between the BAM and SAM) and a simpler formulation of the EKE budget that only depends on eddy heat fluxes and BAM (Thompson et al. 2017). Using cross-spectrum analysis, we empirically test the validity of the suggested relationship between EKE and heat flux at different timescales (Boljka et al. 2018). Two different relationships are identified in Fig. 3: 1) a regime where EKE and eddy heat flux relationship holds well (periods longer than 10 days; intermediate timescale); and 2) a regime where this relationship breaks down (periods shorter than 10 days; synoptic timescale). For the relationship to hold (by construction), the imaginary part of the cross-spectrum must follow the angular frequency line and the real part must be constant. This is only true at the intermediate timescales. Hence, the suggested decoupling of baroclinic and barotropic components found in Thompson and Woodworth (2014) only works at intermediate timescales. This is consistent with our theoretical model (Boljka and Shepherd 2018), which predicts decoupling under synoptic temporal and spatial averaging. At synoptic timescales, processes such as barotropic momentum fluxes (closely related to the latitudinal shifts in the jet stream) contribute to the variability in EKE. This is consistent with the dynamics of storms that occur on timescales shorter than 10 days (e.g. Simmons and Hoskins 1978). This is further discussed in Boljka et al. (2018).

EKE_hflux_cross_spectrum_blog
Figure 3: Imaginary (black solid line) and Real (grey solid line) parts of cross-spectrum between EKE and eddy heat flux. Black dashed line shows the angular frequency (if the tested relationship holds, the imaginary part of cross-spectrum follows this line), the red line distinguishes between the two frequency regimes discussed in text. Source: Boljka et al. (2018).

References

Boljka, L., and T. G. Shepherd, 2018: A multiscale asymptotic theory of extratropical wave, mean-flow interaction. J. Atmos. Sci., in press.

Boljka, L., T. G. Shepherd, and M. Blackburn, 2018: On the coupling between barotropic and baroclinic modes of extratropical atmospheric variability. J. Atmos. Sci., in review.

Marshall, G. J., D. W. J. Thompson, and M. R. van den Broeke, 2017: The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett., 44, 11,580–11,589.

Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414–432.

Thompson, D. W. J., and E. A. Barnes, 2014: Periodic variability in the large-scale Southern Hemisphere atmospheric circulation. Science, 343, 641–645.

Thompson, D. W. J., B. R. Crow, and E. A. Barnes, 2017: Intraseasonal periodicity in the Southern Hemisphere circulation on regional spatial scales. J. Atmos. Sci., 74, 865–877.

Thompson, D. W. J., and J. D. Woodworth, 2014: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 1480–1493.

Sting Jet: the poisonous (and windy) tail of some of the most intense UK storms

Email: a.volonte@pgr.reading.ac.uk

IDL TIFF file
Figure 1: Windstorm Tini (12 Feb 2014) passes over the British Isles bringing extreme winds. A Sting Jet has been identified in the storm. Image courtesy of NASA Earth Observatory

It was the morning of 16th October when South East England got battered by the Great Storm of 1987. Extreme winds occurred, with gusts of 70 knots or more recorded continually for three or four consecutive hours and maximum gusts up to 100 knots. The damage was huge across the country with 15 million trees blown down and 18 fatalities.

case_study_great_storm_fig011
Figure 2: Surface wind gusts in the Great Storm of 1987. Image courtesy of UK Met Office.

The forecast issued on the evening of 15th October failed to identify the incoming hazard but forecasters were not to blame as the strongest winds were actually due to a phenomenon that had yet to be discovered at the time: the Sting Jet. A new topic of weather-related research had started: what was the cause of the exceptionally strong winds in the Great Storm?

It was in Reading at the beginning of 21st century that scientists came up with the first formal description of those winds, using observations and model simulations. Following the intuitions of Norwegian forecasters they used the term Sting Jet, the ‘sting at the end of the tail’. Using some imagination we can see the resemblance of the bent-back cloud head with a scorpion’s tail: strong winds coming out from its tip and descending towards the surface can then be seen as the poisonous sting at the end of the tail.

Conceptual+model+of+storm+development
Figure 3: Conceptual model of a sting-jet extratropical cyclone, from Clark et al, 2005. As the cloud head bends back and the cold front moves ahead we can see the Sting Jet exiting from the cloud tip and descending into the opening frontal fracture.  WJ: Warm conveyor belt. CJ: Cold conveyor belt. SJ: Sting jet.

In the last decade sting-jet research progressed steadily with observational, modelling and climatological studies confirming that the strong winds can occur relatively often, that they form in intense extratropical cyclones with a particular shape and are caused by an additional airstream that is neither related to the Cold nor to the Warm Conveyor Belt. The key questions are currently focused on the dynamics of Sting Jets: how do they form and accelerate?

Works recently published (and others about to come out, stay tuned!) claim that although the Sting Jet occurs in an area in which fairly strong winds would already be expected given the morphology of the storm, a further mechanism of acceleration is needed to take into account its full strength. In fact, it is the onset of mesoscale instabilities and the occurrence of evaporative cooling on the airstream that enhances its descent and acceleration, generating a focused intense jet (see references for more details). It is thus necessary a synergy between the general dynamics of the storm and the local processes in the cloud head in order to produce what we call the Sting Jet .

plot_3D_sj ccb_short
Figure 4: Sting Jet (green) and Cold Conveyor Belt (blue) in the simulations of Windstorm Tini. The animation shows how the onset of the strongest winds is related to the descent of the Sting Jet. For further details on this animation and on the analysis of Windstorm Tini see here.

References:

http://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/great-storm

Browning, K. A. (2004), The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Q.J.R. Meteorol. Soc., 130: 375–399. doi:10.1256/qj.02.143

Clark, P. A., K. A. Browning, and C. Wang (2005), The sting at the end of the tail: Model diagnostics of fine-scale three-dimensional structure of the cloud head. Q.J.R. Meteorol. Soc., 131: 2263–2292. doi:10.1256/qj.04.36

Martínez-Alvarado, O., L.H. Baker, S.L. Gray, J. Methven, and R.S. Plant (2014), Distinguishing the Cold Conveyor Belt and Sting Jet Airstreams in an Intense Extratropical Cyclone. Mon. Wea. Rev., 142, 2571–2595, doi: 10.1175/MWR-D-13-00348.1.

Hart, N.G., S.L. Gray, and P.A. Clark, 0: Sting-jet windstorms over the North Atlantic: Climatology and contribution to extreme wind risk. J. Climate, 0, doi: 10.1175/JCLI-D-16-0791.1.

Volonté, A., P.A. Clark, S.L. Gray. The role of Mesoscale Instabilities in the Sting-Jet dynamics in Windstorm Tini. Poster presented at European Geosciences Union – General Assembly 2017, Dynamical Meteorology (General session)

Understanding the dynamics of cyclone clustering

Priestley, M. D. K., J. G. Pinto, H. F. Dacre, and L. C. Shaffrey (2016), Rossby wave breaking, the upper level jet, and serial clustering of extratropical cyclones in western Europe, Geophys. Res. Lett., 43, doi:10.1002/2016GL071277.

Email: m.d.k.priestley@pgr.reading.ac.uk

Extratropical cyclones are the number one natural hazard that affects western Europe (Della-Marta, 2010). These cyclones can cause widespread socio-economic damage through extreme wind gusts that can damage property, and also through intense precipitation, which may result in prolonged flood events. For example the intensely stormy winter of 2013/2014 saw 456mm of rain fall in under 90 days across the UK; this broke records nationwide as 175% of the seasonal average fell (Kendon & McCarthy, 2015). One particular storm in this season was cyclone Tini (figure 1), this was a very deep cyclone (minimum pressure – 952 hPa) which brought peak gusts of over 100 mph to the UK. These gusts caused widespread structural damage that resulted in 20,000 homes losing power. These extremes can be considerably worse when multiple extratropical cyclones affect one specific geographical region in a very short space of time. This is known as cyclone clustering. Some of the most damaging clustering events can result in huge insured losses, for example the storms in the winter of 1999/2000 resulted in €16 billion of losses (Swiss Re, 2016); this being more than 10 times the annual average.

figure-1
Figure 1. A Meteosat visible satellite image at 12 UTC on February 12th 2014 showing cyclone Tini over the UK. Image credit to NEODAAS/University of Dundee.

Up until recently cyclone clustering had been given little attention in terms of scientific research, despite it being a widely accepted phenomenon in the scientific community. With these events being such high risk events it is important to understand the atmospheric dynamics that are associated with these events; and this is exactly what we have been doing recently. In our new study we attempt to characterise cyclone clustering in several different locations and associate each different set of clusters with a different dynamical setup in the upper troposphere. The different locations we focus on are defined by three areas, one encompassing the UK and centred at 55°N. Our other two areas are 10° to the north and south of this (centred at 65°N and 45°N.) The previous study of Pinto et al. (2014) examined several winter seasons and found links between the upper-level jet, Rossby wave breaking (RWB) and the occurrence of clustering. RWB is the meridional overturning of air in the upper troposphere. It is identified using the potential temperature (θ) field on the dynamical tropopause, with a reversal of the normal equator-pole θ gradient representing RWB. This identification method is explained in full in Masato et al. (2013) and also illustrated in figure 2. We have greatly expanded on this analysis to look at all winter clustering events from 1979/1980 to 2014/2015 and their connection with these dynamical features.

schematic_box1
Figure 2. Evolution of Rossby waves on the tropopause. RWB occurs when these waves overturn by a significant amount. H: High potential temperature; L: Low potential temperature (Priestley et al., 2017).

We find that when we get clustering it is accompanied with a much stronger jet at 250 hPa than in the climatology, with average speeds peaking at over 50 ms-1 (figures 3a-c). In all cases there is also a much greater presence of RWB in regions not seen from the climatology (Figure 3d). In figure 3a there is more RWB to the south of the jet, in figure 3b there is an increased presence on both the northern and southern flanks, and finally in figure 3c there is much more RWB to the north. The presence of this anomalous RWB transfers momentum into the jet, which acts to strengthen and extend it toward western Europe.

figure-2
Figure 3. The dynamical setup for clustering occurring at (a) 65°N; (b) 55°N; and (c) 45°N. The climatology is shown in (d). Coloured shading is the average potential temperature on the tropopause, black contours are the average 250 hPa wind speeds and black crosses are where RWB is occurring.

The location of the RWB controls the jet tilt; more RWB to the south of the jet acts to angle it more northwards (figure 3a), there is a southward deflection when there is more RWB to the north of the jet (figure 3c). The presence of RWB on both sides extends it along a more central axis (figure 3b). Therefore the occurrence of RWB in a particular location and the resultant angle of the jet acts to direct cyclones to various parts of western Europe in quick succession.

In our recently published study we go into much more detail regarding the variability associated with these dynamics and also how the jet and RWB interact in time. This can be found at http://dx.doi.org/10.1002/2016GL071277.

This work is funded by NERC via the SCENARIO DTP and is also co-sponsored by Aon Benfield.

References

Della-Marta, P. M., Liniger, M. A., Appenzeller, C., Bresch, D. N., Köllner-Heck, P., & Muccione, V. (2010). Improved estimates of the European winter windstorm climate and the risk of reinsurance loss using climate model data. Journal of Applied Meteorolo

Kendon, M., & McCarthy, M. (2015). The UK’s wet and stormy winter of 2013/2014. Weather, 70(2), 40-47.

Masato, G., Hoskins, B. J., & Woollings, T. (2013). Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach. Journal of Climate, 26(13), 4535-4549.

Pinto, J. G., Gómara, I., Masato, G., Dacre, H. F., Woollings, T., & Caballero, R. (2014). Large‐scale dynamics associated with clustering of extratropical cyclones affecting Western Europe. Journal of Geophysical Research: Atmospheres, 119(24).

Priestley, M. D. K., J. G. Pinto, H. F. Dacre, and L. C. Shaffrey (2017). The role of cyclone clustering during the stormy winter of 2013/2014. Manuscript in preparation.

Swiss Re. (2016). Winter storm clusters in Europe, Swiss Re publishing, Zurich, 16 pp., http://www.swissre.com/library/winter_storm_clusters_in_europe.html. Accessed 24/11/16.