The Variation of Geomagnetic Storm Duration with Intensity

Email: carl.haines@pgr.reading.ac.uk


Haines, C., M. J. Owens, L. Barnard, M. Lockwood, and A. Ruffenach, 2019: The Variation of Geomagnetic Storm Duration with Intensity. Solar Physics, 294, https://doi.org/10.1007/s11207-019-1546-z


Variability in the near-Earth solar wind conditions can adversely affect a number of ground- and space-based technologies. Some of these space weather impacts on ground infrastructure are expected to increase primarily with geomagnetic storm intensity, but also storm duration, through time-integrated effects. Forecasting storm duration is also necessary for scheduling the resumption of safe operating of affected infrastructure. It is therefore important to understand the degree to which storm intensity and duration are related.

In this study, we use the recently re-calibrated aa index, aaH to analyse the relationship between geomagnetic storm intensity and storm duration over the past 150 years, further adding to our understanding of the climatology of geomagnetic activity. In particular, we construct and test a simple probabilistic forecast of storm duration based on storm intensity.

Using a peak-above-threshold approach to defining storms, we observe that more intense storms do indeed last longer but with a non-linear relationship (Figure 1).

Figure 1: The mean duration (red) and number of storms (blue) plotted as a function of storm intensity.

Next, we analysed the distribution of storm durations in eight different classes of storms dependent on the peak intensity of the storm. We found them to be approximately lognormal with parameters depending on the storm intensity. A lognormal distribution is defined by the mean of the logarithm of the values, μ, and the standard deviation of the logarithm of the values, σ. These parameters were found from the observed durations in each intensity class through Maximum Likelihood Estimation (MLE) and used to create a lognormal distribution, plotted in Figure 2 in dark purple. The light purple distribution shows a histogram of the observed data as an estimate of the probability density function (PDF). By eye, the lognormal distribution provides a reasonable first-order match at all intensity thresholds.

Figure 2: The distribution of duration for storms with a peak between 150 and 190nT.

On this basis we created a method to probabilistically predict storm duration given peak intensity. For each of the peak intensity classes, we have calculated the values of μ and σ for the lognormal fits to the duration distributions shown as the black points in Figure 3. It is clear from the points in the left panel of Figure 3 that μ increases as intensity increases, agreeing with the previous results in Figure 1 (i.e., duration increases as intensity increases).

The parameter μ can be approximated as a function of storm intensity by:

μ(intensity) = A ln (B intensity−C)

where A, B and C are free parameters. A least squares fit was implemented, and the coefficients A, B and C were found to be 0.455, 4.632, 283.143 respectively and this curve is plotted, along with uncertainty bars, in Figure 3 (left). Although the fit is based on weighted bin-centres of storm intensity, the equation can be used to interpolate for a given value of intensity. σ can be approximated by a linear fit to give σ as a function of the peak intensity. Figure 3 (right) shows the best fit line which has a shallow gradient of −5.08×10−4 and y-intercept at 0.659.

Figure 3: (Left) The mean of the log-space as a function of intensity. (Right) The standard deviation of the log-space as a function of intensity.

These equations can be used to find lognormal parameters as a function of storm peak intensity. From these, a distribution of duration can be created and hence a probabilistic estimate of the duration of this storm is available. This can be used to predict the probability a storm will last at least e.g. 24 hours. Figure 4 shows the output of the model for a range of storm peak intensity compared against a test set of the aaH index. The model has good agreement with the observations and provides a robust method for estimating geomagnetic storm duration.

The results demonstrate significant advancements in not only understanding the properties and structure of storms, but also how we can predict and forecast these dynamic and hazardous events.

For more information, please see the open-access paper.

Figure 4: The probability that a storm will last at least 24 hours plotted as a function of storm intensity. The black line shows the observed probability and the red line shows the model output.

How does plasma from the solar wind enter Earth’s magnetosphere?

Earth’s radiation belts are a hazardous environment for the satellites underpinning our everyday life. The behaviour of these high-energy particles, trapped by Earth’s magnetic field, is partly determined by the existence of plasma waves. These waves provide the mechanisms by which energy and momentum are transferred and particle populations physically moved around, and it’s some of these waves that I study in my PhD.

However, I’ve noticed that whenever I talk about my work, I rarely talk about where this plasma comes from. In schools it’s often taught that space is a vacuum, and while it is closer to a vacuum than anything we can make on Earth, there are enough particles to make it a dangerous environment. A significant amount of particles do escape from Earth’s ionosphere into the magnetosphere but in this post I’ll focus on material entering from the solar wind. This constant outflow of hot particles from the Sun is a plasma, a fluid where enough of the particles are ionised that the behaviour of the fluid is then dominated by electric and magnetic fields. Since the charged particles in a plasma interact with each other, with external electric and magnetic fields, and also generate more fields by moving and interacting, this makes for some weird and wonderful behaviour.

magnetosphere_diagram
Figure 1: The area of space dominated by Earth’s magnetic field (the magnetosphere) is shaped by the constant flow of the solar wind (a plasma predominantly composed of protons, electrons and alpha particles). Plasma inside the magnetosphere collects in specific areas; the radiation belts are particularly of interest as particles there pose a danger to satellites. Credit: NASA/Goddard/Aaron Kaas

When explaining my work to family or friends, I often describe Earth’s magnetic field as a shield to the solar wind. Because the solar wind is well ionised, it is highly conductive, and this means that approximately, the magnetic field is “frozen in” to the plasma. If the magnetic field changes, the plasma follows this change. Similarly, if the plasma flows somewhere, the magnetic field is dragged along with it. (This is known as Alfvén’s frozen in theorem – the amount of plasma in a volume parallel to the magnetic field line remains constant). And this is why the magnetosphere acts as shield to all this energy streaming out of the Sun – while the magnetic field embedded in the solar wind is topologically distinct from the magnetic field of the Earth, there is no plasma transfer across magnetic field lines, and it streams past our planet (although this dynamic pressure still compresses the plasma of the magnetosphere, giving it that typical asymmetric shape in Figure 1).

Of course, the question still remains of how the solar wind plasma enters the Earth’s magnetic field if such a shielding effect exists. You may have noticed in Figure 1 that there are gaps in the shield that the Earth’s dipole magnetic field presents to the solar wind; these are called the cusps, and at these locations the magnetic field connects to the solar wind. Here, plasma can travel along magnetic field lines and impact us on Earth.

But there’s also a more interesting phenomenon occurring – on a small enough scale (i.e. the very thin boundaries between two magnetic domains) the assumptions behind the frozen-in theorem break down, and then we start to see one of the processes that make the magnetosphere such a complex, fascinating and dynamic system to study. Say we have two regions of plasma with opposing orientation of the magnetic field. Then in a middle area these opposing field lines will suddenly snap to a new configuration, allowing them to peel off and away from this tightly packed central region. Figure 2 illustrates this process – you can see that after pushing red and blue field lines together, they suddenly jump to a new configuration. As well as changing the topology of the magnetic field, the plasma at the centre is energised and accelerated, shooting off along the magnetic field lines. Of course even this is a simplification; the whole process is somewhat more messy in reality and I for one don’t really understand how the field can suddenly “snap” to a new configuration.

reconnection
Figure 2: Magnetic reconnection. Two magnetic domains of opposing orientation can undergo a process where the field line configuration suddenly resets. Instead of two distinct magnetic domains, some field lines are suddenly connected to both, and shoot outwards and away, as does the energised plasma.

In the Earth’s magnetosphere there are two main regions where this process is important (Figure 3). Firstly, at the nose of the magnetosphere. The dynamic pressure of the solar wind is compressing the solar wind plasma against the magnetospheric plasma, and when the interplanetary magnetic field is orientated downwards (i.e. opposite to the Earth’s dipole – about half the time) this reconnection can happen. At this point field lines that were solely connected to the Earth or in the solar wind are now connected to both, and plasma can flow along them.

magnetosphere_reconnection_sites
Figure 3: There are two main areas where reconnection happens in Earth’s magnetosphere. Opposing field lines can reconnect, allowing a continual dynamic cycle (the Dungey cycle) of field lines around the magnetosphere. Plasma can travel along these magnetic field lines freely. Credits: NASA/MMS (image) and NASA/Goddard Space Flight Center- Conceptual Image Lab (video)

Then, as the solar wind continues to rush outwards from the Sun, it drags these field lines along with it, past the Earth and into the tail of the magnetosphere. Eventually the build-up of these field lines reaches a critical point in the tail, and boom! Reconnection happens once more. You get a blast of energised plasma shooting along the magnetic field (this gives us the aurora) and the topology has rearranged to separate the magnetic fields of the Earth and solar wind; once more, they are distinct. These dipole field lines move around to the front of the Earth again, to begin this dramatic cycle once more.

Working out when and how these kind of processes take place is still an active area of research, let alone understanding exactly what we expect this new plasma to do when it arrives. If it doesn’t give us a beautiful show of the aurora, will it bounce around the radiation belts, trapped in the stronger magnetic fields near the Earth? Or if it’s not so high energy as that, will it settle in the cooler plasmasphere, to rotate with the Earth and be shaped as the magnetic field is distorted by solar wind variations? Right now I look out my window at a peaceful sunny day and find it incredible that such complicated and dynamic processes are continually happening so (relatively) nearby. It certainly makes space physics an interesting area of research.