Communicating uncertainties associated with anthropogenic climate change

Email: j.f.talib@pgr.reading.ac.uk

This week Prof. Ed Hawkins from the Department of Meteorology and NCAS-Climate gave a University of Reading public lecture discussing the science of climate change. A plethora of research was presented, all highlighting that humans are changing our climate. As scientists we can study the greenhouse effect in scientific labs, observe increasing temperatures across the majority of the planet, or simulate the impact of human actions on the Earth’s climate through using climate models.

simulating_temperature_rise
Figure 1. Global-mean surface temperature in observations (solid black line), and climate model simulations with (red shading) and without (blue shading) human actions. Shown during Prof. Ed Hawkins’ University of Reading Public Lecture.

Fig. 1, presented in Ed Hawkins’ lecture, shows the global mean temperature rise associated with human activities. Two sets of climate simulations have been performed to produce this plot. The first set, shown in blue, are simulations controlled solely by natural forcings, i.e. variations in radiation from the sun and volcanic eruptions. The second, shown in red, are simulations which include both natural forcing and forcing associated with greenhouse gas emissions from human activities. The shading indicates the spread amongst climate models, whilst the observed global-mean temperature is shown by the solid black line. From this plot it is evident that all climate models attribute the rising temperatures over the 20th and 21st century to human activity. Climate simulations without greenhouse gas emissions from human activity indicate a much smaller rise, if any, in global-mean temperature.

However, whilst there is much agreement amongst climate scientists and climate models that our planet is warming due to human activity, understanding the local impact of anthropogenic climate change contains its uncertainties.

For example, my PhD research aims to understand what controls the location and intensity of the Intertropical Convergence Zone. The Intertropical Convergence Zone is a discontinuous, zonal precipitation band in the tropics that migrates meridionally over the seasonal cycle (see Fig. 2). The Intertropical Convergence Zone is associated with wet and dry seasons over Africa, the development of the South Asian Monsoon and the life-cycle of tropical cyclones. However, currently our climate models struggle to simulate characteristics of the Intertropical Convergence Zone. This, alongside other issues, results in climate models differing in the response of tropical precipitation to anthropogenic climate change.

animation
Figure 2. Animation showing the seasonal cycle of the observed monthly-mean precipitation rates between 1979-2014.

Figure 3 is a plot taken from a report written by the Intergovernmental Panel on Climate Change (Climate Change 2013: The Physical Science Basis). Both maps show the projected change from climate model simulations in Northern Hemisphere winter precipitation between the years 2016 to 2035 (left) and 2081 to 2100 (right) relative to 1986 to 2005 under a scenario where minimal action is taken to limit greenhouse gas emissions (RCP8.5) . Whilst the projected changes in precipitation are an interesting topic in their own right, I’d like to draw your attention to the lines and dots annotated on each map. The lines indicate where the majority of climate models agree on a small change. The map on the left indicates that most climate models agree on small changes in precipitation over the majority of the globe over the next two decades. Dots, meanwhile, indicate where climate models agree on a substantial change in Northern Hemisphere winter precipitation. The plot on the right indicates that across the tropics there are substantial areas where models disagree on changes in tropical precipitation due to anthropogenic climate change. Over the majority of Africa, South America and the Maritime Continent, models disagree on the future of precipitation due to climate change.

IPCC_plot
Figure 3. Changes in Northern Hemisphere Winter Precipitation between 2016 to 2035 (left) and 2081 to 2100 (right) relative to 1986 to 2005 under a scenario with minimal reduction in anthropogenic greenhouse gas emission. Taken from IPCC – Climate Change 2013: The Physical Science Basis.

How should scientists present these uncertainties?

I must confess that I am nowhere near an expert in communicating uncertainties, however I hope some of my thoughts will encourage a discussion amongst scientists and users of climate data. Here are some of the ideas I’ve picked up on during my PhD and thoughts associated with them:

  • Climate model average – Take the average amongst climate model simulations. With this method though you take the risk of smoothing out large positive and negative trends. The climate model average is also not a “true” projection of changes due to anthropogenic climate change.
  • Every climate model outcome – Show the range of climate model projections to the user. Here you face the risk of presenting the user with too much climate data. The user may also trust certain model outputs which suit their own agenda.
  • Storylines – This idea was first shown to me in a paper by Zappa, G. and Shepherd, T. G., (2017). You present a series of storylines in which you highlight the key processes that are associated with variability in the regional weather pattern of interest. Each change in the set of processes leads to a different climate model projection. However, once again, the user of the climate model data has to reach their own conclusion on which projection to take action on.
  • Probabilities with climate projections – Typically with short- and medium-range weather forecasts probabilities are used to support the user. These probabilities are generated by re-performing the simulations, each with either different initial conditions or a slight change in model physics, to see the percentage of simulations that agree on model output. However, with climate model simulations, it is slightly more difficult to associate probabilities with projections. How do you generate the probabilities? Climate models have similarities in the methods which they use to represent the physics of our atmosphere and therefore you don’t want the probabilities associated with each climate projection due to similarity amongst climate model set-up. You could base the probabilities on how well the climate model simulates the past, however just because a model simulates the past correctly, doesn’t mean it will correctly simulate the forcing in the future.

There is much more that can be said about communicating uncertainty among climate model projections – a challenge which will continue for several decades. As climate scientists we can sometimes fall into the trap on concentrating on uncertainties. We need to keep on presenting the work that we are confident about, to ensure that the right action is taken to mitigate against anthropogenic climate change.

The Role of the Cloud Radiative Effect in the Sensitivity of the Intertropical Convergence Zone to Convective Mixing

Email: j.f.talib@pgr.reading.ac.uk

Talib, J., S.J. Woolnough, N.P. Klingaman, and C.E. Holloway, 2018: The Role of the Cloud Radiative Effect in the Sensitivity of the Intertropical Convergence Zone to Convective Mixing. J. Climate, 31, 6821–6838, https://doi.org/10.1175/JCLI-D-17-0794.1

Rainfall in the tropics is commonly associated with the Intertropical Convergence Zone (ITCZ), a discontinuous line of convergence collocated at the ascending branch of the Hadley circulation, where strong moist convection leads to high rainfall. What controls the location and intensity of the ITCZ remains a fundamental question in climate science.

ensemble_precip_neat_thesis
Figure 1: Annual-mean, zonal-mean tropical precipitation (mm day-1) from Global Precipitation Climatology Project (GPCP, observations, solid black line) and CMIP5 (current coupled models) output. Dashed line indicates CMIP5 ensemble mean.

In current and previous generations of climate models, the ITCZ is too intense in the Southern Hemisphere, resulting in two annual-mean, zonal-mean tropical precipitation maxima, one in each hemisphere (Figure 1).  Even if we take the same atmospheric models and couple them to a world with only an ocean surface (aquaplanets) with prescribed sea surface temperatues (SSTs), different models simulate different ITCZs (Blackburn et al., 2013).

Within a climate model parameterisations are used to replace processes that are too small-scale or complex to be physically represented in the model. Parameterisation schemes are used to simulate a variety of processes including processes within the boundary layer, radiative fluxes and atmospheric chemistry. However my work, along with a plethora of others, shows that the representation of the ITCZ is sensitive to the convective parameterisation scheme (Figure 2a). The convective parameterisation scheme simulates the life cycle of clouds within a model grid-box.

Our method of showing that the simulated ITCZ is sensitive to the convective parameterisation scheme is by altering the convective mixing rate in prescribed-SST aquaplanet simulations. The convective mixing rate determines the amount of mixing a convective parcel has with the environmental air, therefore the greater the convective mixing rate, the quicker a convective parcel will become similar to the environmental air, given fixed convective parcel properties.

AEIprecipCREon
Figure 2: Zonal-mean, time-mean (a) precipitation rates (mm day-1}$) and (b) AEI (W m-2) in simulations where the convective mixing rate is varied.

In our study, the structure of the simulated ITCZ is sensitive to the convective mixing rate. Low convective mixing rates simulate a double ITCZ (two precipitation maxima, orange and red lines in Figure 2a), and high convective mixing rates simulate a single ITCZ (blue and black lines).

We then associate these ITCZ structures to the atmospheric energy input (AEI). The AEI is the amount of energy left in the atmosphere once considering the top of the atmosphere and surface energy budgets. We conclude, similar to Bischoff and Schneider, 2016, that when the AEI is positive (negative) at the equator, a single (double) ITCZ is simulated (Figure 2b). When the AEI is negative at the equator, energy is needed to be transported towards the equator for equilibrium. From a mean circulation perspective, this take place in a double ITCZ scenario (Figure 3). A positive AEI at the equator, is associated with poleward energy transport and a single ITCZ.

blog_figure_ITCZ_simulation
Figure 3: Schematic of a single (left) and double ITCZ (right). Blue arrows denote energy transport. In a single ITCZ scenario more energy is transported in the upper branches of the Hadley circulation, resulting in a net-poleward energy transport. In a double ITCZ scenario, more energy is transport equatorward than poleward at low latitudes, leading to an equatorward energy transport.

In our paper, we use this association between the AEI and ITCZ to hypothesize that without the cloud radiative effect (CRE), atmospheric heating due to cloud-radiation interactions, a double ITCZ will be simulated. We also hypothesize that prescribing the CRE will reduce the sensitivity of the ITCZ to convective mixing, as simulated AEI changes are predominately due to CRE changes.

In the rest of the paper we perform simulations with the CRE removed and prescribed to explore further the role of the CRE in the sensitivity of the ITCZ. We conclude that when removing the CRE a double ITCZ becomes more favourable and in both sets of simulations the ITCZ is less sensitive to convective mixing. The remaining sensitivity is associated with latent heat flux alterations.

My future work following this publication explores the role of coupling in the sensitivity of the ITCZ to the convective parameterisation scheme. Prescribing the SSTs implies an arbitary ocean heat transport, however in the real world the ocean heat transport is sensitive to the atmospheric circulation. Does this sensitivity between the ocean heat transport and atmospheric circulation affect the sensitivity of the ITCZ to convective mixing?

Thanks to my funders, SCENARIO NERC DTP, and supervisors for their support for this project.

References:

Blackburn, M. et al., (2013). The Aqua-planet Experiment (APE): Control SST simulation. J. Meteo. Soc. Japan. Ser. II, 91, 17–56.

Bischoff, T. and Schneider, T. (2016). The Equatorial Energy Balance, ITCZ Position, and Double-ITCZ Bifurcations. J. Climate., 29(8), 2997–3013, and Corrigendum, 29(19), 7167–7167.

 

Presenting in Ponte Vedra, Florida – 33rd Conference on Hurricanes and Tropical Meteorology

Email: j.f.talib@pgr.reading.ac.uk

You’ve watched many speak before you. You’ve practised your presentation repeatedly. You’ve spent hours, days, months, and sometimes years, understanding your scientific work. Yet, no matter the audience’s size or specialism, the nerves always creep in before a presentation. It’s especially no different at your first international conference!

IMG_20180420_133234

Between the 16th and 20th April 2018, me, Jonathan Beverley and Bethan Harris were fortunate enough to attend and present at the American Meteorological Society 33rd Conference on Hurricanes and Tropical Meteorology in Ponte Vedra, Florida. For each of us, our first international conference!

Being a regular user of Instagram through the conference, especially the Instagram Story function, I was regularly asked by my friends back home, “what actually happens at a scientific conference”? Very simple really – scientists from around the world, from different departments, universities, and countries, come to share their work, in the hope of progressing the scientific field, to learn from one another, and network with future collaborators. For myself, it was an opportunity to present recently submitted work and to discuss with fellow researchers on the important questions that should be asked during the rest of my PhD. One outcome of my talk for example, was a two-hour discussion with a graduate student from Caltech, which not only improved my own work, but also helped me understand other research in global circulation.

Recordings of the presentations given by University of Reading PhD students can be found at:

Alongside presenting my own work, I had the opportunity to listen and learn from other scientific researchers. The conference had oral and poster presentations from a variety of tropical meteorology subject areas including hurricanes, global circulation, sub-seasonal forecasting, monsoons and Madden-Julian Oscillation. One of the things that I most enjoy at conferences is to hear from leading academics give an overview of certain topic or issue. For example, Kerry Emanuel spoke on the inferences that can be made from simple models of tropical convection. Through applying four key principles of tropical meteorology including the weak temperature gradient approximation and conservation of free-tropospheric moist static energy, we can understand tropical meteorology processes including the Intertropical Convergence Zone, Walker circulation and observed temperature and humidity profiles.

Of course, if you’re going to fly to the other side of the pond, you must take advantage of being in the USA. We saw a SPACEX rocket launch, (just at a distance of 150 miles away,) experienced travelling through a squall line, visited the launch sites of NASA’s first space programs, and explored the sunny streets of Miami. It was a great privilege to have the opportunity to present and attend the AMS 33rd Conference on Hurricanes and Tropical Meteorology, and I am hugely thankful to NERC SCENARIO DTP and the Department of Meteorology for funding my work and travel.

 

Inspirational Female Scientists #women1918

100 years ago today the UK parliament reformed the electoral system in Great Britain by permitting women over the age of 30 to vote. Unfortunately, there were terms to the act that meant women either had to be a member or married to a member of the Local Government Register, a property owner, or a graduate voting in a University constituency. However, crucial and progressive steps had been taken for women’s rights, and it is the same for today as it was 100 years ago, that more is needed to be done to ensure global gender equality.

At Social Metwork HQ, we have taken our time to reflect and be encouraged by inspirational female scientists. Different students across the department have written short paragraphs on female scientists that have inspired them to where they are today. If you have any other suggestions for inspirational scientists, please feel free to leave us a comment.

Amelie Emmy Noether – Kaja Milczewska

emmy-noether-2A true revolutionary in the field of theoretical physics and abstract algebra, Amelie Emmy Noether was a German-born inspiration thanks to her perseverance and passion for research. Instead of teaching French and English to schoolgirls, Emmy pursued the study of mathematics at the University of Erlangen. She then taught under a man’s name and without pay because she was a women.  During her exploration of the mathematics behind Einstein’s general relativity alongside renowned scientists like Hilbert and Klein, she discovered the fundamentals of conserved quantities such as energy and momentum under symmetric invariance of their respective quantities: time and homogeneity of space. She built the bridge between conservation and symmetry in nature, and although Noether’s Theorem is fundamental to our understanding of nature’s conservation laws, Emmy has received undeservedly small recognition throughout the last century.

Claudine Hermann – Helene Bresson

Claudine-HermannClaudine Hermann is a French physicist and Emeritus Professor at the École Polytechnique in Paris. Her work, on physics of solids (mainly on photo-emission of polarized electrons and near-field optics), led to her becoming the first female professor at this prestigious school. Aside from her work in Physics, Claudine studied and wrote about female scientists’ situation in Europe and the influence of both parents’ works on their daughter’s professional choices. Claudine wishes to give girls “other examples than the unreachable Marie Curie”. She is the founder of the Women and Sciences association and represented it at the European Commission to promote gender equality in Science and to help women accessing scientific knowledge. Claudine is also the president of the European Platform of Women Scientists which represents hundreds of associations and more than 12,000 female scientists.

Katherine Johnson – Sally Woodhouse

26646856911_ca242812ee_o_1For most people being handpicked to be one of three students to integrate West Virginia’s graduate schools would probably be the most notable life achievements. However for Katherine Johnson’s this was just the start of a remarkable list of accomplishments. In 1952 Johnson joined the all-black West Area Computing section at NACA (to become NASA in 1958). Acting as a computer, Johnson analysed flight test data, provided maths for engineering lectures and worked on the trajectory for America’s first human space flight.

She became the first woman to receive an author credit on a Flight Research Division report in 1960 and went on to author or co-author 26 research reports. Johnson is perhaps best known (in part due to the excellent feel good film Hidden Figures) for her work on the flight trajectory for John Glenn’s 1962 orbital mission.

katherine_johnson_obama

She was required to check the calculations of NASA’s IBM computer and Glenn is reported to have asked for her to personally check the coordinates.

“GET THE GIRL TO CHECK THE NUMBERS… IF SHE SAYS THE NUMBERS ARE GOOD, I’M READY TO GO.”

Katherine was also involved in calculations for the Apollo missions trajectories, including Apollo 11. In 2015 she was presented with the Presidential Medal of Freedom by Barack Obama.

Marie Tharp – Caroline Dunning

World War II was an important period in terms of scientific advance. In addition, it enabled more women to be trained in professions such as geology, at a time when very few women were in earth sciences. One such woman was Marie Tharp. Following the advancement of sonar technology during WWII, in the early 1950s, ships travelled across the Atlantic Ocean recording ocean depth. maria-tharp-oceanWomen however were not allowed on such ships, thus Marie Tharp was stationed in the lab, checking and plotting the data. Her drawings showed the presence of the North Atlantic Ridge, with a deep V-shaped notch that ran the length of the mountain range, indicating the presence of a rift valley, where magma emerges to form new crust. At this time the theory of plate tectonics was seen as ridiculous. Her supervisor initially dismissed her results as ‘girl talk’ and forced her to redo them. The same results were found. Her work led to the acceptance of the theory of plate tectonics and continental drift.

Ada Lovelace – Dominic Jones

ada-lovelace-20825279-1-402Ada Lovelace was a 19th century Mathematician popularly referred to as the “first computer programmer”. She was the translator of “Sketch of the Analytical Engine, with Notes from the Translator”, (said “notes” tripling the length of the document and comprising its most striking insights) one of the documents critical to the development of modern computer programming. She was one of the few people to understand and even fewer who were able to develop for the machine. That she had such incredible insight into a machine which didn’t even exist yet, but which would go on to become so ubiquitous is amazing!

Drs. Jenni Evans, Sukyoung Lee, and Yvette Richardson – Michael Johnston

Leading Scientists at Penn State University, Drs. Jenni Evans, Sukyoung Lee, and Yvette Richardson serve as role models for students in STEM subjects. The three professors are active in linking their research interests to not only education but also science communication, and government policy. Between them, they highlight some of the many avenues a career in STEM can lead to. Whether its authoring a widely used textbook, leading advisory panels, or challenging students throughout their time in higher education – these leaders never cease to be an inspiration.

 

Why become a Royal Meteorological Society Student member?

This week the Royal Meteorological Society (RMetS) published their strategic plan for the period of 2018 to 2020, and here at Social Metwork HQ we thought it would be a splendid idea to reflect on the benefits of being a student member of the Royal Meteorological Society.

An important benefit in my opinion is that when becoming a member of RMetS you join a well-established community who hold enthusiasm about the weather and climate at its core. Members come from all corners of the world and at different stages of their career spanning the entire range: from the amateur weather enthusiasts to professionals.  nicole-kuhn-450747As a student, being an RMetS member can lead to conversations that could develop your career and bring unexpected opportunities. This has been greatly enhanced with the RMetS mentoring scheme.

RMetS host many different types of meetings, including annual conferences, meetings hosted by regional centres, and national meetings. Additional gatherings are held by special interest groups, ranging from Weather Arts & Music to Dynamical Problems. Meetings on a regional and national scale provide a platform for discussion and learning amongst those in the field. DEhXj9AXkAARyMM.jpg largeFor a student, the highlight in the RMetS calendar is the annual student conference. Every year, sixty to eighty students come together to present their work and develop professional relationships that continue for years to come. This year’s conference is hosted at the University of York on the 5th and 6th July 2018 (more information). After two student conferences under my belt (see previous blog post), I would highly recommend any early career research scientist attending this event. It serves as a platform to share their own work in a friendly atmosphere and be inspired by the wider student community.

nasa-63030Other benefits to becoming an RMetS student member include eligibility to the Legacies Fund, grants and fellowships, and receiving a monthly copy of Weather magazine. Most importantly though, through becoming a RMetS member you support a professional society who are committed to increasing awareness of the importance of weather and climate in policy and decision-making. Alongside this week’s publication of RMetS’ strategic plan, both the Met Office and NASA have published press releases stating that 2017 was the warmest year on record without El Niño. The atmosphere and oceans of our planet are changing at unprecedented rates: rising sea levels, reductions in Arctic sea-ice, and an increased frequency of extreme weather events to name but a few climate change impacts. Becoming an RMetS student member does not only benefit your career and knowledge, but also supports a society that is committed to promoting and raising awareness of weather and climate science.

RMetS Impact of Science Conference 2017.

Email – j.f.talib@pgr.reading.ac.uk

“We aim to help people make better decisions than they would if we weren’t here”

Rob Varley CEO of Met Office

This week PhD students from the University of Reading attended the Royal Meteorological Society Impact of Science Conference for Students and Early Career Scientists. Approximately eighty scientists from across the UK and beyond gathered at the UK Met Office to learn new science, share their own work, and develop new communication skills.

image4

Across the two days students presented their work in either a poster or oral format. Jonathan Beverley, Lewis Blunn and I presented posters on our work, whilst Kaja Milczewska, Adam Bateson, Bethan Harris, Armenia Franco-Diaz and Sally Woodhouse gave oral presentations. Honourable mentions for their presentations were given to Bethan Harris and Sally Woodhouse who presented work on the energetics of atmospheric water vapour diffusion and the representation of mass transport over the Arctic in climate models (respectively). Both were invited to write an article for RMetS Weather Magazine (watch this space). Congratulations also to Jonathan Beverley for winning the conference’s photo competition!

IMG_3055
Jonathan Beverley’s Winning Photo.

Alongside student presentations, two keynote speaker sessions took place, with the latter of these sessions titled Science Communication: Lessons from the past, learning for future impact. Speakers in this session included Prof. Ellie Highwood (Professor of Climate Physics and Dean for Diversity and Inclusion at University of Reading), Chris Huhne (Co-chair of ET-index and former Secretary of State for Energy and Climate Change), Leo Hickman (editor for Carbon Brief) and Dr Amanda Maycock (NERC Independent Research Fellow and Associate Professor in Climate Dynamics, University of Leeds). Having a diverse range of speakers encouraged thought-provoking discussion and raised issues in science communication from many angles.

Prof. Ellie Highwood opened the session challenging us all to step beyond the typical methods of scientific communication. Try presenting your science without plots. Try presenting your work with no slides at all! You could step beyond the boundaries even more by creating interesting props (for example, the notorious climate change blanket). Next up Chris Huhne and Leo Hickman gave an overview of the political and media interactions with climate change science (respectively). The Brexit referendum, Trump’s withdrawal from the Paris Accord and the rise of the phrase “fake news” are some of the issues in a society “where trust in the experts is falling”. Finally, Dr Amanda Maycock presented a broad overview of influential science communicators from the past few centuries. Is science relying too heavily on celebrities for successful communication? Should the research community put more effort into scientific outreach?

Communication and collaboration became the two overarching themes of the conference, and conferences such as this one are a valuable way to develop these skills. Thank you to the Royal Meteorology Society and UK Met Office for hosting the conference and good luck to all the young scientists that we met over the two days.

#RMetSImpact

DEkAxGgXkAAmaWE.jpg large

Also thank you to NCAS for funding my conference registration and to all those who provided photos for this post.

Prof. Tapio Schneider – Our Distinguished PhD Visiting Scientist.

Email: j.f.talib@pgr.reading.ac.uk

Every year PhD students from the Department of Meteorology at the University of Reading welcome a distinguished scientist in the field of environmental sciences. Previous scientists include Richard Rotunno (UCAR), Isaac Held (GFDL) and Susan Solomon (NOAA). This year’s honoured visitor was Professor Tapio Schneider from the climate dynamics research group from California Institute of Technology (Caltech), the academic home of NASA’s Jet Propulsion Laboratory. Tapio is a well-known contributor to our understanding of global climate dynamics and it was a pleasure to welcome him to our department.

SAMSUNG CSC
Prof. Tapio Schneider with some of the current PhD cohort.

Our visiting scientist programme in the department is an opportunity for PhD students to share and explain their research to an external visitor. It allows for PhD research to be looked at from a completely new perspective which will hopefully improve the PhD studies. In a typical PhD visiting scientist week, the visiting scientist meets students one to one, attends departmental research groups and presents work in departmental seminars.

Tapio Schneider presented two departmental seminars during his time with us titled How low clouds respond to warming: Observational, numerical and physical constraints and Model hierachies: From advancing climate dynamics to improving predictions. The latter of these seminars encouraged a discussion to rethink how we approach advancing our modelling capabilities. Tapio argued that the atmospheric modelling community had not fully engaged in the benefits that observations offer. He suggested that our goal should be a heirarchical system that integrates both observational data and models. We should look into creating “machine-learning” models, those which use observational data to improve our modelling capabilities through altering parameterisation schemes and radiative balance calculations at the top of the atmosphere (as two examples).

As already mentioned, the visiting scientist also meets with students one-to-one and it was highly beneficial for my own project to have a meeting with Tapio Schneider. We discussed papers released by himself alongside his former PhD student Tobias Bischoff (for example, The Equatorial Energy Balance, ITCZ position and Double-ITCZ bifurications) which concentrate on creating a diagnostic framework with which we can estimate the location and structure of the Inter-Tropical Convergence Zone (ITCZ). We discussed conclusions reached from my own aquaplanet simulations and how they relate to the proposed diagnostic framework. Keep an eye on the blog for a post coming soon on the developments in my own PhD project, (titled, what determines the location and intensity of the ITCZ?).

To bring this blog post to a close I would like to thank Professor Tapio Schneider for his time, knowledge and wisdom that he shared with the PhD cohort whilst at Reading. Thank you also to those from the University of Reading who supported Tapio’s visit. Feedback from the PhD cohort is extremely positive and I would highly recommend a similar scheme for other scientific departments.

20170508_193056
PhD social with the distinguished visitor.

Discovering COP22

Email: j.f.talib@pgr.reading.ac.uk

Over the past two weeks 25,000 delegates have been gathering in Marrakech to discuss mitigation and adaptation for climate change. On the 4th November 2016 the Paris Agreement came into force and as a result discussions during the conference debated its implementation. The Walker Institute and the Department of Meteorology (University of Reading), with the support of the NERC SCENARIO doctoral training partnership and an UNFCCC partnership, supported two PhD students to be official UN observers at COP22, and enabled remote participation with students back at Reading University. To find out more about our work with COP22 continue reading this blog post and check out:

Today (18/11/16) the UK government are set to announce that the United Kingdom has ratified the Paris Agreement. Yesterday, Boris Johnson (UK foreign secretary) signed the Paris Agreement after no objections were raised by the House of Commons or House of Lords. The United Kingdom in accordance with the Intended Nationally Determined Contributions (INDCs) of the European Union, are set to reduce greenhouse gas emissions by 40% by 2030 relative to 1990 emission levels. Today also marks the end of the 22nd Conference of the Parties (COP) for the United Nations Framework Convention on Climate Change and here are some quick summary points that PhD students took away from observing the process in Marrakech:

1) The significance of the Paris Agreement.

“Now that we have Paris, we need to take action immediately”

Teresa Anderson, ActionAid UK.

The Paris Agreement marks a change in the intentions during the COP process. Due to the success and ratification of the Paris Agreement more discussions can be based on the adaptation and mitigation against climate change, rather than negotiating global targets on climate change prevention. The Paris Agreement states that a global response is needed to respond to the threat of climate change and that global temperature rise should be kept well below 2°C and that efforts should be pursued to limit the global temperature rise to 1.5°C. COP22 Marrakech, began by stating that this is the “COP of Action”, and therefore the focus seen during side events, negotiations, dignitary speeches and press conferences was on the need for action.

“Countries have strongly supported the [Paris] Agreement because they realize their own national interest is best secured by pursuing the common good. Now we have to translate words into effective policies and actions.”

Mr Ban Ki-Moon, Secretary General of the United Nations.

paris-agreement-signing

2) A continued effort is needed to concentrate on the individual.

As SCENARIO PhD students we were challenged to understand the process that takes place during a UNFCCC conference. To do this we interviewed many conference delegates including policymakers, research organisations, industry experts, entrepreneurs, environmental consultants and funding sources to name a few. A common theme that ran through most of our interviews is that action is needed to prioritise the individual as well as thinking in terms of national- and community-level. To ensure the successful mitigation and adaptation to climate change, strategies need to come into place that protect the rights of the individual. This poses a global challenge, stretching from protecting the livelihoods of indigenous cultures and those impacted by sea level rise on low-lying islands, to supporting workers who rely on the non-renewable energy industry. In terms of climate research we need to ensure that we make our scientific conclusions accessible on an individual-level so that our work has a greater impact.

“a key goal for us is making climate change research accessible to the user community”

Clare Kapp, WMO Press Office Communications Leader.

3) Action is needed now, however the Paris Agreement only implies action post-2020.

Throughout our attendance in plenary meetings and side events there was an emphasis that whilst the Paris Agreement is an important stepping stone to combatting climate change, action is needed before 2020 for the Paris Agreement to be reached. Currently INDCs are proposed for between 2021-2030, however for the intended global temperature targets to be achieved it was argued that action is needed now. Although, pre-2020 action raises much contention, with the most popular argument against pre-2020 action being that more time and effort is needed for negotiations to ensure that a better understanding of national efforts to climate change mitigation is determined.

“We need to take action before 2020. Working for action post-2020 is not going to be enough. We need to start acting now.”

Honduras Party Representative.

“We need more time to work on the rule book for the Paris Agreement. Discussions on this should continue.”

Switzerland Party Representative.

4) There is a difference in opinion on whether 1.5°C can be reached.

For me the most interesting question we asked conference delegates was “do you think the target of 1.5°C can be reached?” This question brought a difference of opinion including some party members arguing that the change in our non-renewable energy dependence is far too great for the target to be achieved. Meanwhile, other political representatives and NGO delegates argued that accepting the target is unachievable before even trying makes negotiations and discussions less successful. There was also anticipation for the future IPCC report titled, Special Report on Global Warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways.

“Of course we want to fight for 1.5°C, why fight for 2°C? It just makes sense to fight for 1.5°C”

Martina Duncan, Party Representative for Grenada.

COP22 has been a fantastic opportunity for PhD students in our department to interact and understand the process that takes place during a UNFCCC conference. Whilst the past couple of weeks have been dominated by the results of the US election and the associated uncertainties, there has been an increasing global recognition of climate change and that action should be taken. In the next few years the challenge to mitigate and adapt towards climate change will be an increasing priority, and let us hope that these annual UNFCCC conferences are key stepping stones for climate change action.

“This is a problem people are recognising, and that it is time to change”

Jonathan Pershing, US Climate Envoy

Thank you all those who have supported our work at COP22 this year. Thank you to the Walker Institute, NERC SCENARIO doctoral training partnership and UNFCCC for this brilliant opportunity. Thank you to all those who have supported us with publicity including NERC, Royal Meteorological Society, members of staff and PhD students at the University of Reading and Lucy Wallace who has ensured the appropriate communication of our project. Plus a huge thanks to all delegates and staff at COP22 who volunteered their time to talk to us.